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PREFACE

This study has identified a large-scale real-time processing
environment, proposed a computer architecture for the application,
acknowledged a few key problem areas, and suggested an heuristic

approach for their solutions.

The U.S. Continental air traffic control automation system
was chosen to provide a real-time application environment. One
of the major contributions of this study is the formulation of a
novel computer architecture to achieve greater performance improve-
ment over the present ATC automation system by parallel processing.
Problems associated with multiprocessors are reviewed with particu-
lar emphasis on execution time anomalies and memory conflicts. A
directed graph model is used from which simple heuristic rules are
established for memory allocation and dynamic task scheduling so
that near optimal performance can be achieved with minimal system
overhead. The memory allocation and heuristic scheduling schemes
are simulated. The results analyzed closely follow the predicted
system behavior. In view of the complex nature and wide scope of
the subject matter, a number of interesting aspects were inten-
tionally left unanswered.

There are many areas of research still open with respect to
the proposed associative pipeline multiprocessor structure, to say
nothing of the many possible alternative parallel processor struc-
tures. To most of the questions, there are no pat '"right" or "wrong"
answers. There are, rather, trade-offs to be investigated and tech-
niques to be developed. The analyses and methods proposed in this
study are believed to be of direct usefulness in the design of the

next generation of computers.
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1.0 INTRODUCTION

In general, the trend of computer development has always
followed, in addition to the cost factor, three important ob-
jectives: performance, flexibility, and reliability. Of the
three, emphasis has been placed on performance first. This is
evidenced by various advancements in computer technology, such
as shortened memory cyclé time and increased logic circuit
speed, and innovation of simultaneous CPU and I/0 operations,
etc. Gradually, attention has been shifting to flexibility.
This demand has lead to the advent of the "family" concept,
whereby the system tailors a user's needs at present and still
provides easy expansion for him to grow into larger machines
in the future. Of course, reliability has always been an
important consideration in designing a computer, or for that
matter, any electronic system. However, in the past, it
mainly involved the hardware component reliability, e.g.,
transistors, connectors, etc. As long as hardware is carefully
selected and tested, and there is an adequate diagnostic
method for easy off-line maintenance, the system is considered
satisfactory. When computers are used more in real-time ap -
plication areas where users demand almost instantaneous respon-
ses, the reliability requirement is given a new meaning. Some
of the critical real-time systems such as military command and

1,2 5,4,5, and air traffic control

control space exploration
systems 6, etc., cannot tolerate any computer system down-time
at all. Therefore, it becomes highly desirable and a great
challenge to computer system designers to formulate a system

which satisfies, to a large degree, all three requirements.

1.1 A REAL-TIME ENVIRONMENT

Real-time ' is a term that is defined differently by dif-
ferent people. A real-time computer system may be defined as
one which controls an environment by receiving data, processing
it, and taking action or returning results quickly enough to

affect the functioning of the environment at that time.



Implied in the definition is a requirement of the system 're-
sponse time'., Response time is the time which the system takes
to react to a given input. In fact, any environment in which
computers are applied can be classified into three distinctive,
time-related categories. Typical commercial applications, such
as payroll, inventory control, accounts receivable, etc., do

not have stringent time requirements, but they do have to be
performed at a certain time of, say, a month or a week. It is
called a time-dependent environment. However, in a time-sharing
system or an airline ticket reservation system, a user or a
customer enters his request and expects a response in a reason-
able time, perhaps a few seconds. This is called a time-sensi-
tive environment since small variations in service are tolerable.
The third category is typified by aerospace applications whereby
the external work presents the computer with a set of rigid time
constraints: certain times before which the system will not be
able to make use of the processed data. When the external world
is characterized this way, we call it a time-critical environ-
ment. Whether time-sensitive or time-critical, the system re-
ceives data, processes it, takes action and returns results
quickly enough to affect the functioning of the environment as
though the system responds to demands in real-time. Hence,
systems of this sort are called "real-time".

In practice, however, not every function in a real-time
system needs to be carried out quickly. Some functions re-
quire immediate attention more than others, and the distribution
of this type of requirement differs from system to system. This
real-time environment presents complex problems and yet offers
great challenge, Hence, this is precisely the reason that we
are interested in conducting an investigation in establishing
novel computer architecture applicable in a real-time environ-
ment,

1.2 STATEMENT OF THE PROBLEM

The trend in the use of computers in the time-critical
real-time applications is towards larger, high-speed, and more



integrated systems to handle the ever increasing computation
load as well as automation functions. These large-scale systems
typically cover a wide spectrum of activities ranging from book-
keeping data processing to highly sophisticated computations,
Historically, these systems were realized by high performance
general -purpose machines rather than special-purpose hardware

to meet the flexibility requirements. Technologies have ad-
vanced at such an incredible pace that circuit and memory

speeds have reached a point where further improvements will not
make a great deal of impact on the overall System any longer.
Yet, problems demanding great computation capability, particu-
larly in military systems, are increasing. These increased ap-
plication requirements have led to keen interests in seeking
large-scale performance improvement through novel concepts in
computer architecture and system organization,

Accepting the challenge, this study defines a sample
large-scale real-time environment (air traffic control system),
and attempts to formulate a novel computer architecture which
shows great potential in satisfying all of the stringent re-
quirements imposed by the real-time environment.

1.3 SCOPE OF THE STUDY

The first section provides an introduction, a broad defi-
nition of an environment in which we shall confine our studies,
and a description of the problem and motives behind our inves-
tigation. The second section gives a brief description of the
principles and techniques used in the air traffic control
system which serves as our sample real-time system. It encom-
passes the review of the present air traffic control system,
the projection of future demand, and three of the basic air
traffic control automation functions. These basic techniques
are again analyzed in Section 3 to focus on some of their proc-
essing characteristics which are adaptive to parallel processing.
After a brief survey of existing and/or developing parallel
processors, a novel computer architecture is formulated and
recommended for such parallel processing activities with high



efficiency. To achieve the flexibility, modularity, and system
availability, we integrate this computer architecture into a
multiprocessor organization. Section 4 illustrates that such

an effort presents no special system problem. Some simple and
unique designs are introduced for the realization of some crit-
ical functions such as crossbar switching network and interrupt
management subsystems. There is little doubt that a multi-
processor structure with a number of independent operational
resources working concurrently could outperform a sequential
machine with similar characteristics; however, the controlling
of such a system is still not a very well understood problem.
Section 5 performs a general survey on this subject describing
briefly previous work done in multiprocessor scheduling with
special attention on timing anomalies and memory conflict
problems. Perhaps it is a safe conjecture to say that a finite,
economic, formalized scheduling strategy could not be derived
from a limited set of procedures to take care of all situations
produced in a variety of real-time systems. Section 6 proposes
an heuristic approach to both the memory allocation to reduce
potential memory conflict and the dynamic scheduling to minimize
program execution time. A computer simulation program was writ-
ten to evaluate the feasibility of the heuristic approach. The
analysis and evaluation are reported in Section 7. Lastly,
Section 8 concludes this study by giving an assessment of tech-
nology for the implementation of the proposed computer architec-
ture. Also included are areas which deserve further research.
In addition, two appendices are attached. Appendix A gives a
brief description of the GASP simulation language which offers
simple and convenient facilities for bookkeeping and statistics
collection., Appendix B documents the structure and the logic
flow of the simulator itself which provides the intermediate
level of flow charts down to the detailed program listings.



2.0 AIR TRAFFIC CONTROL APPLICATIONS

In recent years, the demand for air transportation has
out-grown the provision of ground facilities to handle it.
Forecasts prepared by the Federal Aviation Administration (FAA)S,
the Civil Aeronautics Board (CAB)Q, and the industry groups 10
indicate continued growth of demand. This is evidenced by the
fact that departure jet liners frequently wait for take-off
clearances in long queues on taxiways while others circle above
in holding patterns. In the spring of 1970, the Professional
Air Traffic Controller Organization stages a "sick-out" to dem-
onstrate the need for great improvement of air traffic control
(ATC) capabilities. It is evident that the improvement can
only be obtained through system automation by which some of the
basic but routine ATC functions could be carried out by computer

systems automatically.

2.1 OVERVIEW OF AIR TRAFFIC CONTROL

The present air traffic control (ATC) system, although it
uses some computers for target tracking and flight plan proces-
sing, is primarily a manual system with regard to the control
and separation of air traffic. The major elements of the system
include ATC facilities, designated airspace volumes, rules and
procedures, airport and weather facilities, navigation and
landing facilities, communication facilities, and the trained
personnel who operate and maintain the system. The FAA operates
three types of ATC facilities; airport traffic control towers,
air route traffic control centers (ARTCC) and flight service
stations (FSS). These, together with airport radars, beacons,
and communication and navigation aids, comprise the major physi-
cal components of the National Airspace System (NAS) .

The ATC philosopy is based on an airspace division concept
which was established to define the services provided by the ATC
System in various geographical regions, altitudes and stages of
flight. Airspace is vertically divided into three major cate-

gories: positive control, controlled or mixed, and uncontrolled.



Positive controlled airspace currently exists above 18,000 feet
in the Northeastern portion of the United States and above
24,000 feet in the remainder of the country. In this airspace,
instrument flight rules (IFR) are in force at all times for all
occupants. The controller accepts responsibility for separating
aircraft. Controlled or mixed airspace, in general, starts at
some altitude above the ground and extends upward to positive
controlled regions. In terminal area control zones, it extends
to the ground. This airspace is shared by controlled and uncon-
trolled aircraft obeying IFR and VFR (Visual Flight Rules) pro-
cedures. The controllers still are responsible for separation
between IFR aircraft, but separation among VFR aircraft and
between VFR and IFR aircraft is achieved by depending on the
pilots' '"see-and-avoid'" capability. On a time-available basis,
controllers provide radar advisories to identified aircraft of
the presence of another aircraft. Uncontrolled airspace under-
lies mixed airspace in which separation is provided by proce-
dures and "see-and-avoid" capability for all aircraft.

The monitoring and control of all aircraft is accomplished
by having the airspace divided horizontally into many areas. As
an aircraft flies across area boundaries, the status of the air-
craft is '"handed-off" from one controller to the adjacent con-
troller consistent with their responsible areas. The controllers
use radar and beacon transponders to detect aircraft, and use
voice communications at VHF frequencies to relay control instruc-
tions. The control scheme is best illustrated in Figure 2-1.

2.2 ATC AUTOMATION PROGRAMS

The evolution process of ATC automation program properly
begins with the release of the Project Beacon 1 report in 1962.
At the recommendation of the report, FAA has embarked on two
major ATC automation programs: enroute and terminal air traffic
control.
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Figure 2-1 Simplified U.S. Air Space Structure

2.2.1 Air Routine Traffic Control Center (ARTCC)

A prime objective of the NAS air traffic control system
is to increase system safety and efficiency through the applica-
tion of automation techniques. Initially, the new level of
automation is projected for Air Route Traffic Control Centers
(ARTCC). There are twenty-seven ARTCC's in the U.S. controlling
IFR flights enroute between points of take-off and landing with-
in controlled airspace. The automation system handles many of
the routine functions that burdened the air traffic controllers,
The overall system configuration is depicted in Figure 2-2 in
which the heart of the automation system is an IBM 9020 compu -
ter 12.

Each central computer will maintain the geographical po-
sition, altitude, and flight data for all controlled aircraft
within its area of jurisdiction. Displays driven by the computer
contain flight information which is automatically updated. Co-

ordination between control positions, such as the "hand off" of
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aircraft while traveling from one control sector to another,
will be computer-assisted. Upon request, the central computer
will provide the requested flight control information in real-
time. With the computer handling most of the bookkeeping, co-
ordination, and "remembering' activities, the controllers will
be able to devote more of their time to situation monitoring,
and emergency handling functions.

The configuration of the central computer complex varies
from site to site, however, Figure 2-3 represents a typical
system which consists of three computing elements (CE), three
I/0 control elements, and nine storage elements (SE). This
multiprocessor system provides high degrees of capacity "availa-
bility" at extra cost in redundant equipment. This capability
of configuring and reconfiguring redundant equipment in and out
of system is achieved by system software and hardware functions
which are invisible on the block diagram. There are two system
software programs and five operational programs. The control
program i is the executive which oversees operations of the

14
, upon

entire system. The Operational Error Analysis Program
detection of an error, analyzes and locates the failure, and
effects system retry and/or reconfiguration. The five operation-
al programs are: Radar Processing, Flight Plan Processing,
Liaison Management, Input Processing, and Output Processing 15.
This system consists of pioneering hardware and software
which have been designed to meet special requirements. It works
well for the application in terms of modularity and availability.
However, it ran into some difficulties during its software
development in terms of meeting real-time response requirements.
This is due partly to the fact that the general-purpose software
concept was adopted for special purpose real-time applications,
which created some unexpected timing delays. These timing
anomalies will be discussed in more detail in Sections 4 and 5.

2,2.2 Advanced Radar Terminal System (ARTS)

Nelson and Sunderman L° give an excellent summary on the
history of the terminal ATC automation program. In brief, there
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are three forerunners of the ARTS system. The first system was
implemented in Atlanta, Georgia in 1963 and declared operational
in 1966. The second system was installed in 1966 in the New York
Common IFR Room and has been servicing Kennedy, La Guardia, and
Newark airports since 1969. The third installation took place
at Knoxville, Tennessee in 1969 and was operational in 19790.

(A typical terminal ATC system configuration is illustrated in
Figure 2-4). At present FAA is installing a newer and better
version, ARTS III, at 64 terminal control centers throughout the
United States. The basic functions that an ARTS system performs
are: tagging the radar beacon targets on the display scopes
with alphanumeric data for identification, keyboard hand-off
function between controllers, and target detection and tracking.

The ARTS III system consists of three subsystems: Data
Acquisition Subsystem (DAS), Data Processing Subsystem (DPS),
and Data Entry and Display Subsystem (DEDS) 17. A simplified
information flow diagram for ARTS III system is shown in
Figure 2-5.

DAS accepts broadband beacon replies and converts them
into digital form suitable for further processing by DPS., To-
gether with beacon replies, a set of associated azimuth, range,
and timing information is also sent to DPS for further proces-
sing.

DPS accepts beacon replies from DAS, flight data from
ARTCC and manual data entries from controllers via DEDS. Using
this information, DPS detects targets and performs real-time
tracking of the beacon-equipped aircraft in the terminal area
and provides output data to control the dynamic display of
alphanumeric formats on the DEDS.

DEDS provides the man/machine interface between the air
traffic controllers and the ARTS equipment. It accepts the
alphanumeric flight data (identification and altitude) from
DPS and superimposes it over a broadband radar plan position
indicator (PPI) display of video map, radar, and beacon signals.
It permits controllers to enter and retrieve a variety of flight
data via a combination of alphanumeric and functional keyboards.

11



RADAR AND BEACON SENSORS

l

RADAR
SUBSYSTEM

Y Y

COMPUTER
. . DISPLAY
SUBSYSTEM SUBSYSTEMS

BEACON
SUBSYSTEM

Figure 2-4 A Typical Terminal ATC System Configuration
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The heart of the ARTS III system is a UNIVAC 1230 com-
puter which is modularly expandable into a multiprocessor struc-
ture. A well documented report a8 by UNIVAC describes the

ARTS III system in great detail.

2,2.3 TFuture ATC Demands

In view of the continuing increase in air traffic in the
summer of 1968, the U.S. Secretary of Transportation organized
an Air Traffic Control Advisory Committee (ATCAC). 1Its report !
submitted in September of 1969, has been accepted by the FAA and
the Department of Transportation (DOT) as the basis of an ad-
ditional development program.

In this report, Ashby AU estimated that the total air-
craft activity in the United States will almost double between
1968 and 1980, and more than double between 1980 and 1995, for
a four-fold increase overall. The projection is made in terms
of annual aircraft operations (take-offs and landings) and is
shown in the following Table 2-1.

TABLE 2-1 ANNUAL OPERATIONS, 1968-1995 (IN MILLIONS)

1968 1980 1995
Air Carrier 11 21 31
General Aviation 84 167 448
Military 33 34 40
Total: 128 222 519

From the safety viewpoint, Graham and Orr e analyze the near
mid-air collision data gathered by FAA in 1969 and show that

the mid-air collisions increase as the square of traffic and
obey a random gas law in the mixed controlled portion of the
airspace. Willis et.al. & proposed an Intermittent Positive
Control (IPC) technique to help nominally uncontrolled aircraft
to avoid collisions. All these analyses call for more auto-
mation aids to the current system. Given these projections and
the premise of more automation aids, Blake and Nelson . analyze
the computer power necessary to incorporate these ends into the

current system. The demands are translated into storage require-
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trated in Figure 2-7.

The most significant target tracking operation is track
correlation. Correlation is the process of matching incoming
target report information with established tracks. There are
five correlation classes called initial, primary, normal trial,
secondary, and turning correlation. Correlation may be per-
formed on both target position and assigned beacon code.

In position correlation, a '"bin'" representing an assigned
volume of airspace is constructed around a track's predicted
position. The bin size is determined by the correlation class
and track firmness. The configuration of the correlation bins
is shown in Figure 2-8. As each target report is presented to
the tracking function, the appropriate bin limits are placed
around the predicted position of all tracks one by one and the
entire track file is searched to determined if a target's re-
ported position falls within the limits of any previously es-
tablished tracks.

A newly activated track is given an initial track status.
The initial track is correlated with only one bin per track in
the initial correlation process. Unless only one track bin
correlates with the report, the beacon code is also correlated.
Table 2-4 shows that three sucessful correlations are sufficient
to establish a normal track. Unsucessful correlation will
change the track to a "coast" status.

Successful normal track primary correlation requires report
correlation with a track's primary bin and with the assigned
beacon code. If the primary correlation is successful, the
report information is saved for track position correction and
prediction. Secondary correlation is not required unless cor-
relation with all primary bins or beacon codes has failed.

Secondary correlation bins are built around the same
predicted position as the primary bin. If no correlation exists
with the secondary bins, the reported position is correlated
with left and right turning trial bins. The turning trial bins
are built around predicted turn positions, and their sizes are

the same as the primary bin.
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the target tracking program.

2.3.2 "Target Tracking Function

The primary purpose of the tracking function is to main-
tain the correct association between beacon target reports and
the aircraft flight paths. The tracking technique employed in
ARTS 24
beta tracker with logical turn detection. The multi-state

may be generally characterized as a multi-state, alpha-

characteristic permits adjustment of accumulated history for
each track. The alpha-beta tracker has been most widely used
in real-time tracking systems because it represents a reasonable
trade-off between tracking accuracy, responsiveness, stability,
computation time and computer storage requirement.

The primary operations performed in target tracking
are: track initiation, track correlation, track firmness update,
track correction, and track prediction. A '"track" can be loosely
defined as the path of a target or aircraft as seem by the com-
puter. A central track file will consist of reported and pre-
dicted positions, firmness, velocity, beacon code, altitude,
time of last report and other required data. Firmness is a
measure of the stability of a track and an indication of the
history of that track; the larger the firmness value, the more
stable the track is in the system.

The FAA has established 31 firmness values divided
among three track classes. The three track classes are initial,
normal trial and normal. A new track introduced into the system
is called an initial track, and is assigned a firmness value
in the range of 0-7. A normal track is a track whose status
has been assured and firmness value ranges from 12-31. A normal
trial track is a track that is formed when a normal track begins
to deviate from its expected position. Its firmness value ranges
from 8-10.

The tracking control program is performed once every
125 ms on a sector basis (11.25° of radar scan is equal to a
sector). The tracking operations sequence and their associated

sector bases on which these operations are performed is illus-
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4. Reflections - Some sites may be located so that sur-
rounding buildings and terrain reflect replies. Tar-
gets are reported in false positions as well as in
their true positions.,

5. Fruits - A beacon may receive an erroneous reply from
a target interrogated by another ground station.

Target detection process performed after each sweep
(once every 2.5 ms) consists of two steps, reply correlation,
and target declaration. The reply correlation process is to
correlate new replies collected in a sweep with existing target
records and to up-date these records. When a new reply finds a
match with a target record, a "hit counter" is incremented.

When no match is found, the new reply is entered into the target
record as a possible new target. When all the new replies in a
sweep are processed, the target record is examined. These tar-
gets that have not correlated with any new reply at all will
have their "miss counter" incremented. The combinations of

hits and misses of all targets will be examined next to see
whether a set of criteria could be met. If so, those target
records will be declared as true targets.

Target declaration process involves the computation of
center azimuth of targets using a center of density technique.
Let

AT = Azimuth at trailing edge of the run
R = Run length in sweeps
S = Sum of the sweep counts
H = Number of hits
F = A conversion factor
The center azimuth (AC) is then
AC = AT-F(R-g)

The criteria used, such as number of consecutive hits for
the establishment of leading edge of a run, number of consecutive
misses for the establishment of trailing edge of a run, minimum
number of hits requirement for a run, etc., are systenm para-
meters and they vary from site to site. The declared targets

grouped together as beacon target reports are used as inputs to

18



mately 18 times (run length), although responses varying from
9 to 26 are common. This is illustrated in Figure 2-6.

BEACON
BEAM
WIDTH

RADAR/BEACON

Figure 2-6 Hit/Miss Pattern of Beacon Responses

Some of the signal defects and their causes are given

below:

1. Garbled Replies - Replies received from two or more
aircraft in close proximity may be overlapped.

2. Target Splits - During the run length of a target
a transponder may fail to respond due to over-
interrogation from other ground stations or because
the aircraft is maneuvering its transponder antenna
out of position.

3. Ring-Around - Under certain conditions some trans-
ponders will respond to side lobes of the interroga-
tion radiation pattern which causes excessive run
lengths.
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make sure that no aircraft is in a collision path with another
aircraft at all times, Collision Prediction Function. The more
accurate results that these functions could provide the system
with, the more confident we are to give control commands to the
aircraft, and the better the ATC system.

It is intuitive to note that whatever processes and/or
computations are needed for these ATC functions, they have to
be conducted for each and every aircraft under control, which
means identical processes have to be repeated on a sequential
machine. This undoubtedly suggests the possibility of parallel
processing to increase the system performance. This portion
of the study attempts to identify key processing characteristics
of these three basic ATC functions so that parallel processing
techniques could be introduced and novel computer architecture
could be formulated to obtain performance increase.

2.3.1 Target Detection

The target detection function processes beacon reply mes-
sages received from the data acquisition system (DAS) and gener-
ates beacon target report for the subsequent use by the tracking
function. Due to signal defects, some beacon replies are noise
induced, and on the other hand, some true targets may not pro-
duce any reply momentarily at all. The target detection function
will hence attempt to identify and minimize the effect of these
defects.

Beacon antenna and radar antenna are co-located on the
same rotating shaft scanning at a rate of 15 rpm's or one
revolution in four seconds. While it is moving, the beacon
antenna radiates a narrow beam of energy in the form of pulse
train (called sweep) at 400 sweeps per second. However narrow,
the sweep has a finite width which means that the resolution
of beacon targets will vary from one to three degrees, depending
upon variations in equipment sensitivity, aircraft position,
atmospheric conditions, etc. At the interrogation rate stated

above, a typical target could be expected to respond approxi-
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ment and instruction execution rate which are tabulated in
Tables 2-2 and 2-3.

TABLE Zz-Z STORAGE REQUIREMENT (WORDS)

Enroute Terminal National

Data Acquisition 74000 50000
Command § Control 6300 80000
Present ATC Functions 1150000 260000
Flow Control 62200
Collision Avoidance System 99400 75000
Monitor 100000 75000

Total 1486400 546000 62200

TABLE 2-3 MAXIMUM INSTRUCTION EXECUTION RATE (MILLION INSTRUCTIONS/SEC.)

Largest Enroute Largest Terminal

1980 22.5 19.9
1995 32.5 28.4
Max. Sizing Model 48.5 42.7

Comparing these estimates with the projected state-of-the-art,
computers of sufficient capability will be available long before
1995 to meet the 1995 ATC requirements. The strong implication
is that, while the computer hardware may be available, the com-
plexity of the software in a more highly automated air traffic
control system is a major challenge to the system designers and
computer industry.

2.3 CHARACTERISTICS OF BASIC ATC FUNCTIONS

Althbugh there are quite a number of ATC functions either
being automated or under consideration to be automated, there
are only three basic ATC functions on which other automation
functions are to be built. First, we have to know accurately
all the targets in the vicinity of the control area, Target
Detection Function. Second, we have to know accurately at all
times what and where every detected aircraft is, their altitude,
direction, speed, etc., Tracking Function. Third, we have to

15



PRIMARY/SECONDARY
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Figure 2-7 Tracking Program Sequence
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Figure 2-8 Bin Configuration in Track Correlation
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If there exists a correlation with either the secondary
or turning trial bins, a new normal trial track is established
with a firmness of 10 (Table 2-4). The normal track has its
firmness decreased and is coasted. Each time that neither the
normal nor the normal trial tracks correlate, both firmness
levels will be decreased and both tracks will be coasted, If
the normal track correlates, its associated normal trial track
will be dropped. If the normal trial track correlates and the
normal track does not correlate, the normal trial track will
be made a normal track and the previously established normal
track will be dropped. No turning track correlation is per -
formed on trial tracks or their associated normal tracks,

Should both secondary and turning correlation fail,
the reported beacon code and track assigned beacon codes are
correlated. If this correlation fails also, that target re-
port is ignored. If beacon codes do correlate and the reported
target and predicted track positions are within certain bounds,
the report information is saved for track position correction
and prediction 24.

After each successful correlation, the corresponding
tracks correction is performed based on its reported position
and its predicted position from the previous scan. The cor-
rection is performed on both X and Y coordinates but only the
X coordinate is illustrated.

Position
(Xdp = () + @ -X )
XC - corrected position
Xp - predicted position
X,. - reported position
o - position smoothing parameter
- nth scan
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TABLE 2-4 TRACK FIRMNESS UPDATE SCHEDULE

Previous Successful Unsuccessful
Firmness Correlation Correlation
0 3 (Follow Only) 07) Permanent Coast
1 5 0
2 6 1
3 7 2 ‘s
2 19% 0 ?Inltlal Track
5 14 4
6 15 5
7 16 6./
8 14 0
9 15 B}Normal Trial Track
10 16 9
11#* 10%* Unused
12 14 07
13 15 12
14 16 13
15 17 14
16 18 15
17 19 16
18 20 17
19 21 18
20 22 19
21 23 20 »Normal Track
22 24 21
23 25 22
24 26 23
25 27 24
26 28 25
27 29 26
28 30 27
29 31 28
30 31 29
31 31 30

*Used to establish a trial track.
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Velocitz

(¥c)n = (X )y-1 o+ %(Xr_xp)n

XC - corrected velocity
- velocity smoothing parameter

t - time since last correction

The value of the smoothing parameters is a function of
track firmness.  The progression of firmness states and their
corresponding alpha and beta were chosen in such a manner that
they would approximate a least-square straight line fit of a
succession of position reports. Since this method, a straight
line fit, will not track turning aircraft efficiently, secon-
dary and turning correlations are used to detect a turn and to
adjust the associated firmness.,

After each scan, every normal track will be given a
predicted position to the time of the next radar/beacon scan
following the equation below:

(Xp)n+1 - (Xc)n N (Xc)n'Tn
(Yp)n+1 N (Yc)n * (Yc)n'Tn

p Yp - predicted position
X, - corrected position

c’’c
Xc’Yc - corrected velocity
Tn - period of 1last radar/beacon scan

For a turning track the prediction equations are:
X
( p
(Yp)n+1 = (Yc)n + V cos (6zR Tn) 'Tn

Jne1 = (X)), * V sin (6+R°T ) it

(Xc)n,(Yc)n - current position
(Xp)n+1’(Yp)n+1 - predicted position

V - speed of track
6 - heading of track measured clockwise from North
R - turn rate of track
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2.3.3 Conflict Detection Function

One of the most important functions that an air traffic
control system must perform is the detection of potential col-
lisions (conflict detection) and the implementation of steps to
avoid them (conflict resolution) which comprise the overall
collision avoidance system (CAS). At present, ARTS does not
have any CAS system in operation. However, at Knoxville,
Tennessee a prototype system is being tested and evaluated.

Of the two functions, conflict detection is more basic, requires
a great deal of computation, and is more adaptive to parallel
processing. Hence, only conflict detection will be discussed
here.

Willis, et.al.22 further classifies conflict detection
into two categories: distance filtering and conflict determin-
ation. Distance filtering is to filter from all possible air-
craft pairs those that are within some predetermined distance
from one another. Conflict determination determines which of
the pairs filtered will present a real threat of collision when
possible future positions are taken into account. At present,
the distance filtering is performed by human controllers by
simply viewing the separation of the aircraft on radar scope.
For a computer which cannot '"perceive' a pictorial pattern
rapidly, this can be a difficult problem. In the simplest and
straightforward filtering algorithm, distances between all
aircraft pairs are computed in a radar/beacon scan and those
falling below a particular threshold will be marked for con-
flict determination processing. If there were 5000 aircraft
and each inter-aircraft distance comparison is assumed to
require 10 instructions, the filtering process could require
approximately 108 operations (1/2 X 50002 X 10). Although
some giant computers today may achieve this computation rate,
they are certainly not cost effective. Clearly better ways of
performing distance filtering is needed to reduce this compu-
tation load,.

A generally accepted air space conflict model has two

important parameters. These are the minimum acceptable miss
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distance within which collision is imminent, and the minimum
aircraft to maneuver out of conflicting situations. These two
critical parameters can be projected into the volume of air
space which surrounds each aircraft. This is illustrated in
two dimensions in Figure 2-9,

With this conflict model, Willis, et.al., proposed an
"Implicit Geometric Filtering" technique where air space is
first divided into equal-volume cells, and each is given a
unique, serial identification. As shown in Figure 2-10, each
aircraft's identification number is entered into the cell that
contains its current position as well as the cells intersected
by its area of uncertainty. In this example, aircraft A and B
produce a real conflict which must be resolved with a more de-
tailed calculation. Aircraft B and C or A and C present poten-
tial conflict which will be ranked second in priority for the
conflict determination process.

SPACE TRAVELED

IN WARNING TIME

Figure 2-9 Conflict Space of a Single Aircraft
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Figure 2-10

Implicit Geometric Filtering
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3.0 anN APPROACH TO PARALLEL PROCESSING

In the second section, we have briefly described the
principles and techniques in the realization of three basic
ATC functions. 1In this chapter, we shall analyze these tech-
niques and attempt to unveil some of their processing charac-
teristics which are adaptive to parallel processing. After a
brief survey of existing and/or developmental parallel pro-
cessors, which may do the job, we formulate and recommend a
novel architecture for such parallel processing activities
with high efficiency.

3.1 ATC PARALLEL PROCESSING ANALYSIS

Both steps in the target detection function can be pro-
cessed in parallel. The reply correlation is nothing but
searching through the entire beacon record for a match with a
specific reply. The search results can be marked at corres-
ponding beacon record entries. At the end of each beacon
sweep all hit and miss counters can be incremented in parallel.
Hence, all updates, such as sensing for leading and trailing
edges, etc., can also be done in parallel. When targets are
ready to be declared, the center azimuth computation can cer-
tainly be carried out simultaneously. It is important to note
that some processes (e.g.,Asearch) are logical and some (e.g.,
center of azimuth calculation) are arithmetic parallel pro-
cesses,

In target tracking all types of correlations can be
performed in parallel since they are carried out by repetitive
between-the-limits search operations, which are logical pro-
cesses. In track correction and position prediction the com-
putations can be performed in parallel also provided that there
are parallel arithmetic units.

It is in the conflict detection function, however, that
the parallel processes have the greatest pay-off. As stated in
Section 2, the implicit geometrical filtering technique could
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indeed reduce computer operations from N2/Z to N (N is the
number of aircraft). However, we must take pains to compute,

in addition to its present position, those critical positions
covered by its area of uncertainty as well. With parallel
processing capability these N2/2 operations become tractable.
The greatest advantage is that simple straightforward algorithms
may be used without relying on complex computations.

3.2 PARALLEL PROCESSOR SURVEY

25 conducted a

Among many good survey papers, Hobbs
comprehensive investigation in parallel processor systems,
technologies, and applications, No attempt is made here to
cover as much front and depth as he did, but rather to high-
light some systems which are more relevant to the real-time
problems specified; namely, Air Traffic Control.

Aside from the theoretical treatment by Holland 26

and Comfort27, the first parallel processor under development

is the ILLIAC IV28 which was structured after Solomon computer29
ILLIAC IV consists of a two-dimensional array of 256 processing
elements arranged in four sub-arrays or quadrant of 64 processing
elements each. Each element, in addition to having its own fast
local store and powerful arithmetic unit, has the capability to
communicate with its four neighbors. Each quadrant has a
control unit which controls the operations of its 64 elements.
Driven by a host machine, the system can be operated in several
configurations, For example, all control units can be executing
the same instruction stream, or each could be executing a dif-
ferent instruction stream.

A somewhat different approach to parallel data computa-
tions is that of the associative processor. The classic
associative processor utilizes associative or content-addressable
memory techniques with the inclusion of additional processing
operations on each word of data. Fuller30 describes the as-
sociative memory processor with what he termed '"sequential
state transformation'. Sequential state transformation is a

computing technique for performing word-parallel, bit-serial
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logical and arithmetic operations on data stored in an associa-
tive memory. This technique is based on the capability to per-
form an associative search, perform a Boolean operation
simultaneously on data from all words responding to the as-
sociative match, and multi-write the results simultaneously
back into the responding words.

Shore and Polkinghorn, Jr.31 have proposed a detailed
design of a sophisticated, and supposedly flexible, associative
memory processor based on the techniques described by Fuller.
In this processor, the total associative word length can be
segmented on a software basis into any number of fields called
syllables, each of arbitrary length. Associative memory search
criteria (greater than, less than, greater than or equal to,
less than or equal to, exact match, and don't care) can be
specified independently for each of these syllables., 1If a
particular word satisfies the criteria in an associative search,
a bit is set in a response store (RS) section of that word. A
record of previously satisfied searches may thereby be main-
tained in the RS of each word. Multi-add and multi-write
parallel-bit operations (key register to associative memory
word) may be performed simultaneously on all words responding
to an exact match in a RS search. Complex arithmetic and logical
operations on two syllables of the same word may be implemented
using the associative search, the multi-add and multi-write
operations, and Fuller's sequential state transformation tech-
nique. These operations would be executed bit-serially on each
word, with the execution time dependent on the width of the
largest syllable.

Recently, Meilander>? and Eddy33 proposed the application
of an associative processor to perform a ground-based conflict
prediction function. FAA has procured the use of a plated-wire
associative processor for air traffic control evaluation at
Knoxville, Tennessee34

Shooman35

has presented a different approach to parallel
processing based on an orthogonal memory. An orthogonal memory

has two addressing directions: word-wise as in conventional
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random access memory, and bite-slice as in associative memory.
The orthogonal memory itself does not have any matching or
processing capability. Computation and data processing are
also done in two directions; word-wise by conventional arith-
metic unit and bit-slice by a number of serial function genera-
tors (FG). With the help of LSI, he assumes 1000 FG's for a
typical system, dividing memory into 1000-word blocks. Hence,
parallel processing is done on a 1000-word basic by bit-slicing
them out to the FG's.

A new parallel processing concept, reported by Githen536:
depicts an unstructured ensemble of any desired number of
identical processing elements under a common control unit. This
machine, called Parallel Element Processing Ensemble (PEPE) is
intended as a supplement to conventional computers. The control
unit exercises global control over PEPE elements via common
input/output and control buses. All elements receive the same
input and control signals and the ensemble as a whole performs
on common operation at a time. Individual elements either
participate or not, depending on their internal state which can
be conditionally set by a global command. Each processing
element has three functional units: the local memory unit,
arithmetic unit and a correlation unit. The purpose of the
correlator is to facilitate imput data to the corresponding
element in a rapid pace.

Litzler37 reported a similar development as PEPE in
the class of unstructured parallel ensemble machines. This
one, called Single Instruction and Multiple Data Ensemble (SIMDE),
is modelled after PEPE with two modifications. SIMDE did away
with the correlation unit in each element. Instead, each
element has a condition code register. The global control unit
could sense the condition of this register and change the status
(active, inactive, hold, etc.) of the element accordingly. The
secoend modification is in the output control. For its applica-
tion, SIMDE is required to output data at a much faster pace than
PEPE does. Hence, a priority output bus and its control are
added. Both PEPE and SIMDE use micro-program memories for the
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mechanization of the control logic.

One of the fastest super machines in operation at
present is the STAR‘computer38 which accomplishes parallel
processing by serially streaming large data blocks through a
high-speed "pipeline' arithmetic unit. The ultra high-speed
performance is achieved through system organization rather
than technology breakthrough. Eight 1.28 us memory modules
are interleaved at 160 ns apart. Each memory module has 2K
words by 512 bits per word. Each word is divided into four
128-bit fields, which could be pumped through the pipeline at
a 40 ns rate. If indeed pertinent data can be arranged such
that consecutive 8-word fields (computer word is 64 bits,
memory word is 512 bits) are stored in corresponding locations
of separate memory modules, the system can keep the pipeline
going at its full speed which amounts to 25 million operations

per second.

3.3 A NOVEL ARCHITECTURE FOR PARALLEL PROCESSING

As indicated in the previous survey, a basic associative
memory (also called content addressable memory) is best suited
for logical parallel processing. However, its bit-sliced
arithmetic operation, although parallel in word, is quite a
limiting factor. With short operands and simple "counting"
processes (either increment or decrement), the slow speed
bit-sliced operation is still tolerable. When the operands are
long or when there are multiplication or division involved in
the arithmetic operation, the system advantage of associative
memory is then diminished, simply because it takes a long
time to do bit-serial multiplication and division. What we
need then is a high performance arithmetic parallel processing
capability superimposed on an associative memory. It is
interesting to note that both PEPE and SIMDE class of machines
achieve this goal of possessing both logical and arithmetic
parallel processing capability in a completely reverse order.
Multiple conventional processors are provided to form a base

for arithmetic parallel processing. Logical parallelism is
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achieved by carrying out sequential searches by various pro-
cessors simultaneously.

We propose to integrate a ''pipeline' processing capa-
bility with the associative memory to form a powerful parallel
processing unit. Pipelining is the least expensive way to
achieve parallel processing because the concept does not require
additional processing units, but rather control of the streaming
of input and output data in and out of a simgle processing unit.
Before exploiting the "Pipelined Associative Processor'" (PAP)
operating principles, let us first turn our attention to see

how an associative memory works.

3.3.1 Basic Associative Memory Operations

Associative memory is a unit capable of performing a
storage function and also of performing a set of operations
over the stored words. A significant feature is that the
operations can be performed simultaneously over all stored
words and/or over any selected field of all stored words. The
operations can be divided into two categories: search opera-
tions and processing operations. Typical search operations
include equality search, inequality search, maximum search and
minimum search. Typical processing operations would be the
logical combinations of these search operations plus consequent
updates, i.e., read and write operations of certain storage
locations. Parallel operations over selected fields are ac-
complished through the use of masking patterns which can be
easily done by hardware logic and it will not be elaborated
on here.

Figure 3-1 illustrates a generalized block diagram for
the associative memory. A brief example will help demonstrate
the parallel processing capability of the associative memory.

A segment of contiguous 1's in the Mask Register estab-
lishes a valid field which presents the argument 0101 of the
Key Register to the entire associative array for parallel
search over all words. Exact matches induce proper identifi-
cation in the Match Result Register. In case of multiple
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Figure 3-1 Operational Principle of Association Memory

matches as shown in the figure, the multiple match resolver

will pick the first word following an arbitrary but pre-determined
scan. The entire word may then be read out into the Key Register.
Hence, it completes the basic equality search cycle. In early
models, the basic equality search on a specified field is

carried out on a "bit slice" basis. By bit slice, we mean a

bit column of the entire AM array. The ith bit slice is therefore

Eh bit of every word in the memory. Hence, for

contains the i
a field search, consecutive bit slice search cycles have to be
performed repeatedly. Recently, however, a number of solid
state LSI AM chips were successfully developed to carry out
the basic equality field search in a true parallel manner, i.e.,
word parallel as well as bit parallel fashion. For our inves-
tigation here, we assume an AM with true parallel basic equal-
ity search capability.

Other basic operations include read the next word and
write the next word functions which take the single output

of MMR to select the next word for read or write. Parallel
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write function, which stores a common data into all words,

can also be considered a basic AM operation since it requires
only one memory write cycle to complete its action. Parallel
write is accomplished by feeding MRR output directly to the word
drivers for multiple word selection. These basic operations are
mechanized into the following instructions:

READ NEXT WORD (RW)
WRITE NEXT WORD (WW)
PARALLEL WRITE (WP)
EQUALITY SEARCH (EQ)

3.3.2 Compound Associative Memory Operations

The capabilities of an associative memory are affected
to a great extent by the facilities provided for processing
the contents of the Match Result Register. The Multiple Match
Resolver is one example which pinpoints the first matched word.
The Match Result Storage is used to temporarily store the con-
figuration of MRR for later recall. A logic complement can be
performed in MRR to achieve an inequality search by way of an
equality search operation. By providing logic operation
capability between MRR and MRS, compound associative memory
operations can be achieved by combinations of consecutive two
or more basic operations. A typical set of compound instruc-
tions carrying out compound associative memory operations is
listed below:

GREATER THAN (GT)
LESS THAN (LT)
MAXIMUM (MX)
MINIMUM (MN)

No attempt is made to describe, in detail, how these
compound operations are mechanized. In general, they are
carried out on a bit slice basis, and the results of each bit
slice comparison must be interpreted before the next step can
take place. More compound operations can be created from the

basic equality search operation and compound operations, For
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example,

GREATER THAN OR EQUAL TO (GE)
LESS THAN OR EQUAL TO (LE)
BETWEEN LIMITS (BL)

can be achieved by executing GT - EQ, LT - EQ, and GT - LT
sequences respectively.

Please note that arithmetic operations are purposely
omitted here, since they are to be addressed later in the

pipeline processing section.

3.3.3 Parallel Processing - Logical

Let us define loosely '"logical processing'" as a set of
operations containing criteria matching, record up-date, and
incrementing or decrementing. Parallel processing in an
associative memory follows these steps closely. In general,
criteria matching is needed to locate items of interest in a
file of some sort. These items are 'tagged" for later identi-
fication. Record up-date involves simple insertion or deletion
of certain field data in a record. The notion of "tagging" is
quite important in carrying out parallel processing. Within
each associative word, there is a tag field and a temporary
storage field, which are used to keep track of the processing
history and the temporary results.

An example would be appropriate at this point. The
beacon reply correlation part of the target detection function
is chosen to demonstrate how parallel processing is achieved.
For clarity, only the simplified version is presented here.

We assume that each associative memory word stores one target
record which, for this application, has the field configuration
as shown in Figure 3-2.

For each beacon sweep, we take one reply at a time and
correlate it with all target records on "range'" in parallel.
Tag those records when correlations are successful. Create
new records from reply data if these replies do not correlate.
After all the replies in a sweep have been correlated, we have
two types of records: new records and records in process.
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Figure 3-2 An Associative Memory Word

For new records, we then look for a sequence of consecutive
hits (system parameter) to determine the leading edge of a
target. For those records in process, we up-date the azimuth,
increment the hit or miss counter and look for a sequence of
consecutive misses (system parameter) to determine the trailing
edge of a target. New records with established leading edges
will be changed to records in process status, whereas targets
with established trailing edges will be passed on for target
declaration.

Target declaration requires arithmetic parallel pro-
cessing, which will not be elaborated on here. The rest of
the correlation logic is illustrated in a flow diagram in
Figure 3-3.

The "bin'" correlation process in the tracking function
is another perfect example for the logic parallel processing
capability of associative memory. Assuming all correct bin
sizes are set up for all established tracks in the central
track file stored in an associative memory array, for each
newly declared target there are only four comparison operations
(two GE and two LE operations on two separate fields, range
and azimuth) need to be performed to complete the correlation.

Logical parallel processing also applies perfectly on
the geometric filtering process of the conflict prediction
function. First of all, some aircraft may be screened out of
conflict contention by altitude filtering. This is done by
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setting up the smallest altitude layers within which aircraft
are considered to be unsafe, and are tagged for the second step
planar filtering consideration. For each altitude layer there
is a pair of limits (lower and upper). The whole process is
carried out by setting up consecutive 1limit pairs and searching
the entire central track file on '"between limit" criteria.
Aircraft found in between limits are then tagged for further
processing.

For planar filtering, the terminal radar range of 60
miles may be sectionalized into 10 X 10 = 100 6-mile squares.
For each square, two between-limits searches are performed to
detect aircraft inside the square. For our discussion purposes,
we may consider that aircraft pairs and/or groups within a
6-mile square need further processing; aircraft which do not
share the same 6-mile square are out of conflict contention.
Three more filtering paths with off-set grid patterns are
necessary to accommodate those aircraft which happen to strad-
dle across boundary lines. Figure 3-4 shows one possible set
of off-set grid patterns.

6 miles

Q(0,0) 2(0,0)

Figure 3-4 Off-Set Grid Patterns for Planar Filtering
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The origin Q(0,0) of the 6-mile square may Systematically
move to positions X, Y, and Z for off-set. Aircraft straddle
across lines AB and QC will be detected by square X(0,0);
similarly, aircraft straddle across lines BC and AQ will be
detected by square Z(0,0). Aircraft clustered around four
corners Q, A, B, and C will be detected by square Y(0,0). The
Closest aircraft pairs which can go undetected by this method
will be, for example, aircraft pairs U, V as indicated in
Figure 3-4. For a 6-mile square the distance between U and
V is over 4 miles. If a 4-mile distance is not enough for
safely manuvering out of conflict, more filtering paths would
be required. The main point here is, however, not to demon-
strate any conflict detection algorithm, but rather to illus-
trate straightforward correlation methods carried out by an

associative memory.

3.3.4 Pipeline Processing - Arithmetic

The performance comparison between associative processor

and sequential machines can be typically demonstrated in

Figure 3-5. A sequential machine is fast on unit computation
and its total processing time increases linearly with the in-
crease of number of compurations; whereas, an associative
processor performing bit-arithmetic is rather slow, but its
total processing time is independent of the number of objects
to be processed. The crossover point is a function of the
processors' operational characteristics, While retaining the

bit-arithmetic capability for a large number of computations
at the high end, a pipelined high-speed arithmetic unit is

added to the associative processor to make its performance
more attractive at the low end of the computing spectrun as
well,

The concept of pumping large blocks of data streams
through preset arithmetic pipelines to achieve greater in-
Creases in system throughput is quite well known. This technique
has been used quite extensively in special-purpose applications,
mostly defense and/or aerospace in nature.
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Process Time

No of Data Sets

Figure 3-5 Typical Performance Comparison Between
Sequential and Associative Processors

Only recently did this technique appear in the general-purpose
large-scale computers. Two examples are Control Data Corpor-
ation's STAR series and Texas Instrument's ASC computer. The
key to any pipeline operation is the ability to formulate the
problem and organize the data block in such a way that once
the arithmetic function unit is set to perform a specific
operation the data is then streaming through the unit as fast
as the hardware permits, and the results are stored away as
fast as they become available. There are two aspects worth
noting. First, the more data that can be pumped through the
arithmetic unit without interruption, the higher the system
throughput becomes. Second, the speed of the pipeline depends
on how fast the memory can deliver and store data and on the
processing speed of the arithmetic unit.

To superimpose a pipeline structure on an associative
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memory, we need, of course, a high-speed arithmetic unit which
takes data from the Key Register. In addition, we need a
stepping mechanism which can be achieved by the combined oper -
ation of the Match Result Register and the Multiple Match
Resolver.

Figure 3-6 shows the block diagram of a pipelined
associative processor where a high-speed selection switch is
necessary to select proper fields from the Key Register to
interface with the arithmetic unit. The stepping mechanism
operates as follows: after an equality search instruction,
all the words which match with the criteria specified by the
instruction are registered in the MRR, If a pipeline arithmetic
instruction, e.g., Pipeline Add, is executed next, it will cause
the single MMR output to drive the selected word for read-out
into the Key Register. Two operands specified by the Pipeline
Add instruction will be delivered to the A and B Registers of
the arithmetic unit via the high-speed selection switch. After
a short delay, the result of the addition is transferred back
to the Key Register via the selection switch in an appropriate
result field. The MMR output is activated again to drive the
same word in the AM array for storing the result. While driving
the selected word for writing, the MMR output is used simultan-
eously to reset the corresponding bit in MRR. Since the input
logic of MMR is taken unclocked from MRR, the next "1" bit in
MRR is reflected in MMR. This action accomplishes the '"step
down'" and enables the MMR to select the next matched word
automatically, which completes a basic cycle of the Pipeline
Add instruction. The cycle then repeats itself in AM read-out,
operands transfer, add, result transfer and AM write. The
cycle (or stepping down) continues unitl there are no more "
bits left in MRR. In other words, the "O" output of the MMR
terminates the streaming action of the Pipeline Add instruction.

For convenience of looping, it is desirable to provide
a Match Result Storage Register to temporarily store the con-
tents of MRR. When MRR is cleared by the stepping function,
it is possible to restart the stepping cycle again by loading
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MMR by MRS.

of instruction formats as follows:

Search Instruction

Op Code

Field Name

Key

For further clarity, let us define the two types

This instruction searches field for "Key'" as

specified by the operation code.

For those words

which satisfied the searching criteria, the cor-

responding positions of MRR and MRS will be set.

Pipeline Arithmetic Instruction

Op Code Field 1

Field 2

Field 3

This instruction loads MRS into MRR, reads-out the

first word, operates on Field 1 against Field 2 as

specified by Op Code and stores the results in

Field 3.

Except for the loading of MRR by MRS, the

rest of operations repeat until MMR steps through
the entire MRR.
The target azimuth determination of the target detection

function involving the computation of equation

AC = AT-f(R-

)

may simply be programmed as follows:

Op Code Field 1 Field 2

EQS
PDV
PSB
PML
PSB

TARGET DECLARED

S H
R Temp
F Temp
AT Temp

Temp

Temp

Temp
AC

Field 3

(EQ and Store MRR)
(Pipeline Divide)

(Pipeline Subtract)
(Pipeline Multiply)
(Pipeline Subtract)

The first instruction (EQS) identifies those declared

targets.

The rest of the pipeline arithmetic instructions carry

out the necessary computation steps on all of the identified

targets.,
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3.4 SYSTEM VALIDATION CONSIDERATIONS

We have highlighted the special processing characteristics of
the basic ATC functions. The bulk of the processing load turns out
to be straightforward correlation and computation. These two re-
quirements appear to be very closely matched by the capabilities of
the proposed pipeline associative processor where correlations are
easily carried out by the associative memory array and repetitive
computations are conducted by the pipeline arithmetic unit. The
arguments favoring the PAP organization for the ATC applications
presented seem to be quite convincing; however, they are not suf-
ficient to authoritatively validate this organization. What it takes
for the system validation, then, is a complex simulation effort con-
sisting of several major sub-tasks listed as follows:

0 Construction of a complex and versatile simulator capable
of collecting statistics on critical system parameters,

o System design and coding of ATC functions taking full ad-
vantage of the machine structure in parallel and streaming
processing,

0 Construction of a complex and flexible scenario generator
as the input to the simulation providing most, if not all,
possible situations for exhaustive simulation.

The validation process described requires a major level-of
effort which is beyond the scope of this study. However, one ex-
periment being conducted at Knoxville, Tennessee by the FAA, Good-
year and UNIVAC can be referenced to partially reinforce the claims
made on pipeline associative processors. Some of the preliminary
evaluation results are reported as follows:

0 Associative processors and conventional processors can be
combined to perform ATC functions in a real-time environ-
ment,

o The overall tracking function including beacon, radar,
turning, and altitude trackings performs within acceptable

limits,
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The conflict detection algorithms performed by the associa-
tive processor appear to be sound, but anomalies do occur
when tracks are flying parallel. The problem appears to be
residing in the calculation of the track headings rather
than in the detection logic,

Performing the tracking and conflict detection functions at
an estimated load of 1000 aircraft, the associative pro-

cessor is active 61% of the time.
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4,0 THE ASSOCIATIVE PIPELINE MULTIPROCESSOR ORGANIZATION (APMP)

The processing and computation power of an associative
processor equipped with a pipeline arithmetic unit was clearly
demonstrated in the previous chapter to be superior to sequen-
tial computers for specific classes of applications. However,
conventional sequential machines undisputable excel in applica-
tions where numerous logical alternatives have to be tried and
decisions made. It is apparent that for a large-scale real-time
system covering a wide spectrum of data processing and compu-
tation activities, a computer with the combined characteristics
of associative processor and sequential machines will be highly
desirable. In such a system, the sequential machine is an
organizer and controller; whereas, the associative processor is
a doer, a number cruncher. Each contributes its best talent
to achieve an overall optimum system.

This chapter attempts to describe such a computer
organization, which, in this author's opinion, shows great
potential for satisfying all stringent demands in general, as
well as the air traffic control requirements specifically. This
computer system, called Associative Pipeline Multi-processor
(APMP), employs redundancy on a higher level, i.e., a pool of
memory modules shared by a number of arithmetic and logic
processor modules and a number of I/0 processor modules, whereby
all processors can operate independently and simultaneously.

4.1 SYSTEM ORGANIZATION AND MAJOR FEATURES

This chapter attempts to define the APMP system, delineate
the system's functions and achieve the increased performance,
flexibility and reliability that it claims to be capable of
doing. Emphasis will be placed on those major features which
differentiate this system from other multi-processorsl’lz’39’40’41.
Design approaches to realize these features, as well as the

rationales used, will also be explained.
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4.1.1 Associative Pipeline Multiprocessor Structure

A multiprocessor system is defined, in general, as a
number of processors sharing a number of commonly accessible
memories by some means of interconnection between them. In
the associative multiprocessor under discussion, we shall
restrict it to a narrower definition as a number of identical
arithmetic and logic processors and a number of identical
input-output processors sharing a number of commonly accessible
memory modules interconnected by a crossbar switch network
illustrated by the block diagram in Figure 4-1. Note that the
identical crossbar switch network is used to establish the
Communications between arithmetic/logic processors (ALP) and
I/0 processors (IOP). Two types of memory modules are employed:
the conventional random access memory (RAM), and the associative
memory or content addressable memory (CAM) with a pipeline
arithmetic unit.

The A/L processors are identical and independent which
means that they can execute independent tasks simultaneously.
The I/0 processors also perform data transfers and peripheral
control functions independently and simultaneously. All
processors may access memory modules simultaneously provided
that no conflicts are present. Should conflicts occur, a con-
flict resolution logic built into the crossbar switch network,
would determine the winner for the access. The reason why
a crossbar switch network is selected is its design simplicity
and modularity. This characteristic of the switch network
provides easy additions and deletions of various modules. In
essence, one can tailor the system according to the computation
and data processing requirements by providing the appropriate
number of processors and memory modules. The idea of restricting
modules of the same type to be identical is to allow these
modules to be interchangeable so that replacing modules are
readily available if faulty modules are found.

In short, independent and simultaneous processor operations
provide multiprocessing capability of independent tasks (these

tasks may be parts of one job). The parallel search capability
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of an associative memory greatly enhances the system's overall
performance. Modularity of the switch network provides easy
system expansion which meets the flexibility requirement.

Active redundancy applied on the major functional units level

and TMR (Triple Modular Redundancy) voting applied on the

system "hard core" crossbar switch network achieve the objective,

4.1.2 Autonomous Executive Control

In a multiprocessing environment, an executive control
is essential to schedule all the processes, assign computer
resources to these tasks, control the execution of programs,
manage unexpected events, etc. There are several known alter-
natives for scheduling and assigning tasks to a multi-processor
system. One such alternative is to establish one of the A/L
processors as a master and all the rest as slaves. Such a
scheme is feasible but inefficient, particularly when the system
has a 1light load and the master processor (may be other proces-
sors as well) has long idling periods. Another technique suitable
when the set of problems is static, is to use linear or dynamic
programming techniques to establish the optimum assignment.
Where the environment is dynamic with new problems being intro-
duced at random, or where the system admits changing priority,
these techniques may prove too costly and time consuming.
Still another method is not to schedule at all but rather to
assign problems on a first come first serve basis. When there
is no deadline to meet, such a solution seems quite adequate.

However, none of these three alternatives can meet the
real-time system requirement; hence, an autonomous executive
concept is adopted whereby static tasks will be scheduled on
a priority basis and dynamic requests will be handled via an
interrupt system and serviced on a deadline basis. The early
model of this concept was shown in Burrough's B-825 computer.
Later, Pariser42 and Gunderson43 proposed ways of implementing
a "floating executive". Autonomous executive concept is a
refinement of those early models, where a simple flexible inter-

rupt handling mechanism is incorporated. The autonomous
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executive is considered to be dormant in the memory with its
associate data, e.g., memory maps, assignment tables, etc. An
A/L processor servicing a task is said to be in the problem
state. When it finishes its present task, the processor changes
its status into executive state where the autonomous executive
routine (AER) updates the task assignment table and searches
for the next task to be processed. AER locates the new task
in memory, records the assignment, transfers control back to
the problem state and starts processing the new task. In other
words, the system adopts the convention whereby each physical
processor takes its own initiative to request for executive
control at the end of each task, to record the status of the
completed task, and to find a new task for itself. This basic
autonomous executive concept is no different from other multi-
processor executives. The difference lies in the interrupt
handling techniques, and the use of associative memory for
system table storage which will be discussed in a later
section and in Section 6 respectively.

Since all A/L processors are operating independently
and asynchronously, it is conceivable that more than one pro-
cessor may request for executive control at the same time.
Actually, the conflict presents no threat to the system since
it will be resolved by the crossbar switch network automatically,
provided that the first instruction the processor uses to
transfer into executive state (i.e., supervisor call instruction
as in some computers) has the '"test and set' capability all done
in one memory cycle. Supervisor Call instruction with Test and
Set memory capability serves as an interlocking mechanism so
that when a processor has successfully obtained executive
status, it records a mark in a specific memory bit position to
prevent other processors from seizing executive control. The
interlock is essential to guarantee that no two processors can

be in an executive state at the same time.

4.1.3 Memory-Oriented Logic Design

This system's feature is mainly a hardware consideration
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which is influenced by the advances in the state-of-the-art
circuit technology, LSI (Large Scale Integration). For re-
liability and producibility reasons, LSI technology favors
regular, repetitive design of logic networks. A brief review
of the internal structure of an A/L processor reveals that the
structure of the arithmetic unit has a regular pattern whereas
the control unit usually consists of various irregular gates,
registers and counters randomly distributed throughout the
processor. The memory-oriented design concept proposes to
substitute the random gates by microprogrammed control memory
of appropriate size and speed, registers and counters by small
scratchpad memory (or memories).

There are four major advantages: (1) The design pro-
cess is simplified, and the hardware checkout phase is reduced;
(2) Microprogram control techniques transform hardware control
logic design into a programming technique which enables logic
designers to try out various schemes before finalizing the
design; (3) Centralizing the control logic into a control
memory, facilitates easy change of control logic via either
re-programming or replacing the memory unit; and (4) Error
detection schemes are easy to implement on such a system, e.g.,
residue number system for the checkout of arithmetic unit and
simple parity scheme for the checkout of all the memory units.
There are disadvantages of course. In general, microprogramming
techniques are too costly for small, low-performance computers,
and too slow for large, high-performance machines. However,
both these disadvantages can be circumvented in the context
of multiprocessing.

4.2 DESIGN CONSIDERATIONS OF KEY FUNCTIONAL ELEMENTS

In this section, we attempt to describe in some detail
the structural and operational features of some key elements
in the system. The detailed computer architectural design,
such as word length, instruction format, addressing schemes,
etc., is beyond the scope of this study and hence will not
concern us here. Only those features that make this APMP
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system outstandingly different from other systems will be
highlighted. Hence, considerable attention is then given to
the description of crossbar switch network, associative memory
module and interrupt management logic.

There is no special requirement on a random access
memory module to operate in a multiprocessor environment. A
conventional memory module would be adequate if it is a self-
contained system. Bv this we mean that a memorvy module has
its own address register, data register, parity generator/
checker and module number assignment register. Most of the
memory systems, even the off-the-shelf memories, do contain
all the items listed except the last one. This register con-
taining the memory module number is needed for system reconfig-
uration purposes. This way the physical module number is
divorced from the logical module number so that system software
may assign or reassign any number to a memory module in case
of reconfiguration due to memory module failure.

However, the memory module assignment register does
influence the design and operation of the crossbar switch
network control logic. The control logic, instead of responding
to a single request line from a processor, has to incorporate a
comparison circuit to compare a high-order position of an address
field from a processor with the contents of a memory module
assignment register. An equivalent match together with the

processor request is the effective request signal to be evaluated

by the conflict resolution logic. This is diagrammatically
illustrated in Figure 4-2.

As noted previously, any A/L and I/0 processor with a
reasonably powerful instruction set can be structured into a
multiprocessor organization. However, we would like to stress
a design concept, "Regularity and Simplicity", to take great
advantages of recent advancements in LSI technology. In tradi-
tional logic design concept, designers are highly motivated to
save hardware and speed-up logical and arithmetic operations
as fast as possible. This makes the system very difficult to
check out and modify. With the advent of LSI, although hardware

54



MEMORY MODULE M M

ASSTGNMENT — lop | | | === ===
REGISTER == e |
EFFECTIVE
REQUEST COMPARISON
CIRCUIT
RE
I % —.—--.-....
MODULE
aLp |ADDRESS .
4 >
I > — — —
ALP o
I
|
| )
|
I & - - -
ALP

Figure 4-2 Generation of Effective Memory Request

55




saving and high-speed operation are still important design
considerations, they are no longer the dominating factors.
"Regularity and Simplicity" design concept on the other hand
simplified the design and check-out processes, and sped up the
design and implementation cycle. The slight loss in operating
speed can be off-set by the overall increased systems performance

of an associative multiprocessor system.

4,2,1 Crossbar Switch Network

The switching network is the vital link of the multi-
processor system as evidenced in Figure 4-1. It provides data
connections and control interfaces among processor and memory
modules. There are basically two types of switch networks
which are realizable with the state-of-the-art technology.

They are time division (multiplexing) and space-division (cross-
bar) techniques. The time-division scheme requires less
hardware, and is relatively easy to control, but the system is
quite rigid and less efficient since only one processor-memory
pair can be connected at one time. On the other hand, the
space-division which is capable of providing simultaneous con-
nections of processor-memory pairs except in conflict situations,
offers tremendous flexibility and efficiency. The disadvan-
tages of this scheme seem to be ths high hardware cost and
complex control logic which increases with the number of pro-
cessor and memory modules. Since the advent of LSI technology
and its rapid progress, the hardware cost of a computer no
longer influences the overall system cost a great deal. A
sample construction of the crossbar switch network, as illus-
trated in the next paragraph, is a regular planar array of
identical elements which is a perfect application for LSI
fabrication.

In this paragraph, a simple design of the control logic
is demonstrated for the versatile switching matrix. The logic
of the switching matrix can be considered as having two parts,
one for the data and the other for the control. The data paths
are relatively simple as shown in Figure 4-3. At each inter-
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section of the matrix there is a group of switches. These are
represented by a single circle, S and controlled by a single
flip-flop, FS., A flip-flop, being set or reset, closes or opens
the corresponding switches which connect or disconnect the
transmission path between a processor-memory pair. The control
logic as to when to set which flip-flop is dependent on three
logical entities, i.e., the status of a processor (requesting
a memory or not), the status of the requested memory (busy or
available) and the status of possible conflict requests by other
processors. One could devise many methods to resolve the con-
flict from the competing processors to a single memory as
demonstrated by Plummer . However, none could yield a higher
degree of simplicity and clarity in design and system flexibility
than straightforward "round-robin" scheme.

The round-robin scheme simply states that after an access
is made to memory M by processor P, the priority "baton'" of M

is passed on to the next processor in a predetermined sequence.
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At any given time, if no request is issued to memory M by higher
priority processors, the low priority processor will be able to
access M, then shift priority to his next-door neighbor. Figure
4-4 illustrates one version of the detailed logic design, in
which another flip-flop FP is added to each crosspoint to regis-
ter processor priority for a particular memory. In Figure 4-4,
only one column (corresponding to one memory) of control logic
is shown since it is identical to all memories. 1In an environ-
ment of 4 processors by n memories, flip-flop FP21 being set
denotes that with respect to memory M1 processor P2 has the
highest priority, P3 next, P4 third, and Pl last. 1In a given
column, only one FP flip-flop can be set at a time. The system
is synchronized on clock pulse basis. By this, we mean that at
every clock time, the effective requests from processors are
examined, conflicts resolved and connections made between a
memory and the winning processor,

Briefly tracing through the logic at this point may be
helpful. Assume that at some point in time FP 21 is set,
memory M1 is not busy and only P3 and P4 are requesting Ml
simultaneously. Since P2 is not requesting, the priority
enable line is passed by FP21 through P2 down to P3. At the end
of the clock period, the priority enable signal and the P3 re-
quest set both FP41 and FS31 at the same time resetting FP21.
Setting FS31 accomplishes interconnection between P3 and M1
while setting FP41 means that the priority baton has been passed
on to P4. FS31 also starts up the memory operation and puts it
in a busy state; in addition, it sends an acknowledge signal
back to the requesting processor. At the end of the memory
cycle, an end-of-cycle signal is activated by the memory which
clears the switch flip-flop FS31 to zero and makes the memory
available for further access. This time P4 is guaranteed to
have the access to Ml. Note that requests are examined and
priority is passed on a clock pulse basis so that no single
processor can tie up a memory module for more than one memory
cycle at a time.
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4.2.2 Interrupt Management

Interrupt schemes in a conventional computer system are
quite well understood. In a multiprocessor environment, however,
the interrupt handling problem becomes more complex particularly
when a system consists of identical processors each of which
can be an executive autonomously. This is simply due to the
fact that when an interrupt occurs what processor should be
selected to take care of it. Before proposing any scheme, let
us examine the characteristics of all interrupts. Basically,
interrupts can be distinguished into four categories:

1. Program generated traps, e.g., sense switches

time out clocks, etc.

2. Program errors, e.g., illegal op code, overflows,

etc.

3. Machine errors, e.g., parity check, arithmetic

checks etc.

4. External interrupts, e.g., I/0 completion,

terminal service requests, etc.

The first two types closely associate with a specific
processor which should handle these interrupts directly. Machine
error, however, can be considered either internal to a processor,
€.g., arithmetic check or external, e.g., parity error during
I/0 transfer. The fourth type is completely external to ALP
processors. Interrupts caused by internal machine errors should
be handled as an external interrupt.

Interrupt handling presents common problems in different
system types. An excellent summary of interrupt features and
problems has been presented by Borgeus44and supplemented by
Bennet45 for single computer systems. A multiprocessor has the
same problems plus additional ones arising mainly from having
more than one processor in the system.

The external interrupts in a multiprocessor environment
are characterized by occurences which are independent of jobs
in execution. The occurrence of this type of interrupt has no

dependency upon a specific processor but is related only to the
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job which generated some I/0 action which in turn generated the
interrupt. Essentially, the external interrupt is a signal to
either reactivate an old process or start a new one. However,
it is not necessary to capture a busy processor to handle an
external interrupt unless: (1) there are no idling procéssors
to take it, and (2) the external interrupt is comnsidered of
higher priority than some of the jobs currently being processed
by all the processors. What we are aiming for is to achieve an
optimum interrupt response system by which all the processors
in the multiprocessor system always execute jobs with highest
priorities at all times. Goutains and Visc46 suggested that
interrupts be handled by a separate Interrupt Directory which
assigns the most urgent interrupt to the processor executing
the task with lowest priority. The Directory could be imple-
mented by hardware consisting of two sets of selection circuit,
two sets of priority evaluation logic an a comparator control
logic. i

We propose an alternate hardware approach to this problem.
The unit is a simple iterative network applied tc all I/O proces-
sors and central processors. Iterative circuit implies repeti-
tive regular logic pattern which again lends itself for
easy implementation by LSI. The construction is extremely
simple. Figure 4-5 shows the network diagram as it goes from
one processor to the next, whereas Figure 4-6 details the logic
within each iterative element. In brief, each IOP collects and
evaluates its own internal interrupts from those I/0 devices
connected to this particular IOP., Associated with each I/O
operation, hence each active I/O device, there is a priority or
urgency index which is equivalent to the priority of the job
that initiated this I/O action. An IOP evaluates all interrupts
with respect to their priorities and presents the interrupt with
respect to their priorities and presents the interrupt with the
highest priority as the input to the iteractive circuit to com-
pete with other high priority interrupts from other I/O proces-
sors. The network, as indicated in Figure 4-5, arbitrarily feeds

each IOP serially from left to right and each ALP from top down.
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The essence is to pass these priorities into a series of com-
parisons so that the highest priority interrupt (IP) is trying
to identify the lowest priority processor (JP). If IP< JP, no
interruption has taken place, and the interrupt simply has to
wait. If, however, IP>JP, the processor number is fed back

to the ALP for the initiation of an interrupt in addition to the
I/0 device number and its priority. Figure 4-6 illustrates in
a symbolic way the simple logic in detail which consists of one
4-bit comparison circuit plus four AND gates and two OR gates.,
Using present TZL logic and a 4-I0P X 4-ALP system, within

500 ns from the first activation of an interrupt, a processor
will be selected.
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5.0 MULTIPROCESSOR CONTROL PHILOSOPHY

In Section 3, we have conceived a novel computer archi-
tecture to meet the parallel processing requirements imposed by
the basic air traffic control functions. To further increase
its power and system reliability, we let the Pipelined Associa-
tive Processor be driven by a generalized multiprocessor struc-
ture as described in Section 4. However, finding techniques
for efficient control of the multiprocessor system with respect
to the optimization of selected parameters is still an ill-
understood problem. In this chapter, we attempt to survey the
state-of-the-art, to study some scheduling techniques, to
delineate some of the practical problems not yet covered by

previous researchers, and to propose some feasible solutions.

5.1 GENERAL BACKGROUND SURVEY

There are numerous papers published discussing, in
general terms, the characteristics and operations of multipro-
cessors. Two of them present good tutorial material. Witt47
explains the multiprogramming and multiprocessing concepts by
an excellent allegory. He considers a secretary working in a
"multiprogrammed environment'. When two or more secretaries are
working in a pool, they are essentially working in a "multi-
processing environment'. He further noted some of the special
problem areas in multiprocessing which are related to certain
forms of communications between the secretaries. Problems arise
when, for example, two secretaries complete their present assign-
ment at once and reach for the highest-priority work in the job
queue at the same time, or when a secretary is rearranging the
priority stack when the other desires the access to the job
queue. Obviously, some kind of lock-out scheme is necessary.
Critchlow48 produced a comprehensive survey on multiprocessing
and multiprogramming systems. It began with some background
history of the growth of multiprocessing, continued with the
detailed description of the memory access control, I/0 switching
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control and the priority interrupt control. It contains a good
discussion on the supervisory control with further breakdown
into memory allocator, scheduler, and I/O control. A good con-
tribution is the discussion on some of the hardward aids to
multiprogramming and multiprocessing, such as memory protection
schemes using limit registers, hardware lockout, memory reloca-
tion schemes using base registers, page turning hardware, etc.

In the early 60's the U.S. Naval Research Laboratory and
the Burroughs Corporation studied the computation requirement
for a real-time, command and control system, which let to the
development of the Burroughs' D-825 modular computer system,

The overall architecture of the D-825 system was reported by

both Anderson, et. al.l and wald?. The executive program, called
Automatic Operating and Scheduling Program (AOSP) has two impor-
tant features: executive function is independent of processors,
and more than one processor may execute AOSP simultaneously,

each evoking programmed lockouts when modification of system
table is required. 1In general, AOSP affects parallel processing
of independent jobs automatically. These systems and software
aspects are reported by Thompson, et.a149.

In the mid-60's, the Federal Aviation Administration (FAA)
embarked on a complex developmental program for increasing the
capabilities and safety of its air traffic control system.
Referred to as the National Airspace System (NAS), the program
is evolving around a general-purpose, modular multiprocessor
system, IBM 9020 consisting of 3 computing elements and 9 storage
elements. The system organization and characteristics, reported
by Blakeney, et. allz, are highlighted by the configuration
control scheme. Each element (computing element, storage element,
etc.) contains a configuration control register (CCR). Set by
special supervisor instructions, these CCR's set up the communi-
cation and control paths among various elements. Two methods
are used for storage interlocking. When common tables or
non-reentrant subroutines are used by all processing elements,
TEST AND SET instruction provides a rapid way of determining
the availabliity of such facilities. When two or more processing
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elements request common storage elements, a tie-breaking hard-
ware priority-circuit in the storage element resolves the
conflict,

The control program (or Executive routine) design is
based on the concept that any computing element may execute
control program according to the needs. Devereaux13 gave a
good description on the main features of the control program,
Dynamic storage allocation is implemented by the supervisor call
instruction, and storage resources in a storage element are
classified into areas, blocks, and lines. The control program
ensures that storage requests are made in a consistent manner,
thereby guarding against the possibility of mutual "dead-lock'".
To avoid system dead-lock, lines are requested before blocks,
which in turn must be requested before areas. If a particular
type of resource is allocated to a program, an additional stor-
age resource of the same type cannot be requested from the
program until all of that type of storage is appropriately

released.

5.2 MULTIPROCESSOR SCHEDULING TECHNIQUES

Scheduling independent processes on independent proces-
sors has created a great deal of interest and challenge; many
researchers have made valuable contributions. In order to
conduct parallel processing (we shall use "parallel processing"
and '"multiprocessing' interchangeably), we must be able to
determine and organize parallel processable tasks. To this end,
Ramamoorthy and Gonzales50 conducted a comprehensive survey of
techniques for recognizing parallel processable streams in
computer programs, and in addition, proposed a new technique
for detecting task parallelism. Other works including HellermanSI,
Stone52 and Squire53 are primarily concerned with detection
parallelism within arithmetic expressions.

Ochsner54, based on a task precedence structure, proposes
a scheduling mechanization method by means of a universal list.
Figure 5-1 shows a sample task precedence structure and an

associated universal list with which these tasks are sequenced,
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The algorithm directs a free processor to scan the list
from the top down until it reaches the first task in the ready-
to-be executed state as indicated by the '"absolute enable bit'".
In addition, each task has a set of "conditional enable bits"
each one corresponding to a particular event, such as completion
of a preceding task, or arrival of a real-time clock signal.

The absolute bit is set to binary 1 when all conditional enable
bits are set to binary 1's, which means all conditions are met
and the task is ready to be executed.

Martin and Estrin55’56

, have investigated problems in

the efficient operation of the Fixed-Plus-Variable Structure
Computer developed at UCLA. 1In particular, they have studied
the a priori assignment and sequencing aspect by means of both
analytical and simulation modeling. The study uses a graph
model in which vertices represent segments of computation in a
program with estimates of execution time. Directed arcs between
vertices establish precedence conditions in the organization of
program segments. The function to minimize was the mean path
length of the scheduled graph. The scheduling process is
iterative in such a way that a trial change of assignment of a
vertix to a processor is accepted only if a reduction is expected
in path length,

Ramamoorthy et. al57 conducted an extensive formal study
of the scheduling problem. Based on a directed graph represen-
tation of task structure, a graph can be reduced by transforming
maximal strongly connected (MSC) subgraphs into single vertices
(getting rid of loops). From the reduced graph, two precedence
partitions: earliest (E) and latest (L), can be generated.
Thus, Ei is the subset of tasks that can be processed in parallel
at the earliest time corresponding to level i, Next, the upper
and lower bounds of the number of processors needed to do the
job in the least possible time can be obtained from these E and
L partitions. Then a dominance relation between tasks is de-
fined, and an important theorem proved which says if task i
dominates task j, then there exists an optimal solution in which
task i is started before or at the same time as task j. Based
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on the E, L partitions and the dominance relation, three algo-
rithms have developed such that given a task graph, the minimum
number of processors required to process the graph in the small-
est time can be determined.

Muntz and Coffman58 have also investigated this very
same problem but took a different approach. Two principal
notions are introduced, pre-emptive scheduling (PS) where pro-
cessors are allowed to be interrupted before a task is completed
and reassigned to a new task, and general scheduling (GS) where
any fraction of the whole capability of a processor can be
abstractly assigned to tasks. For example, if 1/2 of a machine
is assigned to a task which normally requires W time units to
complete, it then will take 2W units of time. Then, they proved
the equivalence of the GS and PS disciplines, which amounts to
saying that time sharing and processor sharing are equivalent.
Finally, they introduced an algorithm for constructing a minimal-
length GS for any computation whose graph is a rooted tree,
i.e., each node has one immediate successor except for a unique

root node which has no successors.

5.3 MULTIPROCESSOR TIMING ANOMALIES

As early as 1960, Richards59 in his study of an abstract
machine with many identical work units (CPU's) and a single job
queue capable of sharing a large memory, discovered some very
interesting peculiarities of the system. Even though the system
operates under a rather natural and reasonable set of rules, the
system may exhibit certain somewhat unexpected anomalies. For
example, it can happen that increasing the number of processors
can increase the length of time required to execute a given set
of tasks.

Later, Graham60 gave a rigorous treatment on the basis
of mathematical analysis and found theoretical bounds on these
timing anomalies. The model used assumes n identical abstract
processing units Pi’ i=1,2,---n, and a set of r tasks

T.

50 j =1,2,---r. Also given is a partial ordering < on T and
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a function u:T>(0,»). Once a processor Pi begins to execute a
task Tj’ it works without interruption until the completion of
that task taking u(Tj) units of time. The partial ordering
represents the precedence structure of the task set so that
T,<T;, then Tj cannot be started until T, has been completed.
Finally, there is a sequence L = (Tsl’ TSZ,-——Tsr) consisting of
all the tasks of T and called a priority list.  Initially, at
time O, all the processors simultaneously scan the list L from
the beginning searching for tasks Tj which are ready to be
executed, i.e., which have no predecessor under < ordering. If
two or more processors attempt to execute several tasks at the
same time, the convention will assign the first ready task to
the processor with the smallest index, the next ready task to
the processor with the next smallest index and so on. In general,
at any time a processor Pi completes a task, it immediately
scans L for the first available ready task to execute. If there
are currently no such tasks, then Pi becomes idle (or executes
an empty task §). Pi remains idle until some other processor
completes its task, at which time all available processors
including Pi immediately scan L for ready tasks. In order to
appreciate the timing anomaly problems, some examples would be
helpful. The partial order < on T and the function U can be
represented by directed graph G(<,u) whose vertices correspond
to the T, and a directed edge (or arc) from T; to Tj denotes
Ti<Tj' The vertices are labeled with name T, and the execution
time units u(Ti). The activity of each Pi is represented by a
timing diagram.

Note that in the timing diagram the intervals are labeled
by task names and their corresponding p's. W is the length of
time required to complete the set of tasks. In the following
examples, variations in each of the four parameters are made

and the effect these variations have on W are seen.
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CASE 5: Increase n to n' by 1 (n' = n+l1)
W= 15
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T e

The examples show that contrary to what might be
generally expected, they can all cause W to increase. Further-
more, Graham gave a rigorous mathematical proof that given two
runs R and R' where R' is related to R by the application of
any combination of the four conditions above, the total run-times
W and W' are related to one another by the following bound:

1 =

where n, n' are the number of processors in runs R and R',
respectively. When the number of processors remain the same,
this relation reduces to a special case,

W' <2 -1

| n

Addressing the problem of timing anomalies as noted by

Richards and Graham, Manacher61 uses a modified form of
Ochsner's task assignment scheme to eliminate these timing
anomalies, which he refers to as the "stablization of task

schedules". A task set bounded by the precedence relation, has
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a priority list associated with it and 1is represented by a
program flow diagram (similar to a directed graph). Assuming

all tasks are running at their maximum run-time, a timing diagram
is constructed according to the scanning rules of free processors
as directed by the priority list. This timing diagram is called
the Standard Gantt Chart (SGC). In addition, the projective

task list (PL) is defined as a list of all tasks ordered accord-
ing to the time each task is picked up on the SGC. A stability
algorithm is established by introducing additional precedence
relations between independent tasks such that long critical

paths of the task set will not be broken in by other unrelated
tasks making those long paths even longer. Both a mathematical
proof of the stability algorithm and a simulation report are
included in this paper. Construction of relatively efficient

SGC's by heuristic methods is also proposed.

5.4 SOME PRACTICAL AND CHALLENGING PROBLEMS

The literature surveyed thus far cannot be considered
exhaustive; nevertheless, it brings out some perspective of the
state-of-the-art of the multiprocessor technology. It does not
seem to be difficult to physically construct such a system at
present; however, controlling such a monster for efficient
operation still remains much of an art. The multiprocessor
timing anomalies under a set of seemingly reasonable operating
rules, reveal a very interesting and challenging problem which
may hold the key to the efficient operation of a multiprocessor
system. .

Let us re-examine the time anomaly study presented pre-
viously a little more deeply. In Graham's model, the role of
the priority list, L, is not clearly defined, especially the
relationship between the task graph (precedence structure) and
L. However, in all examples, the priority list is consistent
with the graph structure, which would not present any problem
in our analysis. Using Case 1 as a base, let us focus on Cases
4 and 5. In Case 4, when the execution time of all tasks is

reduced, the overall program execution time (or path length of
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the directed graph) is, on the contrary, increased. Similar
anomaly occurs in Case 5. The overall program execution time
increases when one more processor is brought into the system.
In practice, the task execution time can never be held constant
since program loops, conditional branches, etc. are contained
within tasks. In an operational multiprocessor environment, to
a lesser degree, the number of processors in the system may
change due to processor failure, maintenance schedules, etc.
The second important practical problem that theoretical
modeling may find difficult to do is the memory allocation
problem. This should not be confused with the general memory
allocation problem in multiprogramming, but rather concerned
with the allocation of independent tasks into separate memory
modules in order to reduce potential memory conflict. When two
OT more processors try to execute independent tasks which
happen to be located in a memory module, the accesses will be
granted one-by-one in a cyclic fashion by system hardware. If
these processors persistently try to access the same memory
module, they all will experience time delays. The amount of
delay is a function of the number of competing processors and
the number of times that each processor would want to access
the common memory. A very revealing case study was reported by
Holland62 on the memory conflict problem of the FAA-9020
multiprocessor system. Based on the system characteristics of
the 9020 computer and its applications, a memory interference
model was built in which computer programs were represented by
a statistical distribution of instruction operating times which
in turn were based on the instruction mix of the application
program planned for carrying out ATC functions. This model was
used to determine the 'stretchout factor'" or extension of pro-
gram execution time that occurs because of the memory access
delays due to competing memory requests from multiple CPU's
and/or IOP's. The results of the simulation are plotted in
Figure 5-2. The results are astonishing. For example, when
two CPU's request the same memory module at the rate of 200,000
accesses per second (5 psec per request to a 2.5 us cycle time
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memory), both tasks increase their running time by 50%. Note
that program execution time stretchout with one processor is
due to the simultaneous I/0 operations. Careful analysis of
the program structure design further reveals that good multi-
programming practices do not necessarily yield good results in
a multiprocessing environment. In the design of the ARTCC
Software System, reentrant code and common data base are used
whenever possible to conserve storage. These practices naturally
increase the possibility of memory conflict which weakens the
performance of the multiprocessor system.

In short, because of the wide variation in task running
time due to program loops, conditional branches, overlapped
I1/0 and CPU operations, memory conflicts, and unpredictable
external requests, the a priori assignment and theoretical
scheduling schemes do not seem to provide a workable answer.
What is needed is a flexible dynamic scheduling algorithm which
attempts to minimize timing anomalies, meets deadlines for 'hard"
real-time tasks, honors tolerable response times for '"not-so-
urgent" tasks, and contributes tolerable bookkeeping overhead
for the system. These requirements seem to point to the direc-
tion that a good heuristic approach may provide an answer.

In the next section, we shall report some of the findings
of the studies following practical heuristic scheduling approaches.,
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6.0 AN HEURISTIC APPROACH TO
MEMORY ALLOCATION AND DYNAMIC SCHEDULING

In this chapter we shall first establish a model on
which our investigation into the memory conflict and timing
anomaly problems will be based. Some definitions will be given
and assumptions will be made. A general but practical way of
structuring real-time programs will be discussed and its rela-
tion with respect to the directed graph representation of task
set will be explained., We then proceed to describe some heu-
ristics used for dynamic scheduling and memory allocations. The
associated theoretical model from which these heuristics are
derived will be presented. Finally, we propose a hardware aid
to the scheduling activity so that system overhead is reduced

to a minimum.

6.1 SYSTEM MODEL

The classical directed graph model will be used as the
base for the study. The graph is reduced or acyclic, i.e., all
data dependent program loops and conditional branches are with-
in vertices. Vertices are used to represent tasks while directed
arcs between vertices, representing partial ordering of the
graph, establish the precedence relationship among tasks. Prec-
edence relations specify the processing and computation sequences
according to procedural and data ''hand-off" constraints. Figure
6-1la shows that precedence relation A<B (A precedes B) satisfies
both the procedural and data hand-off constraints. In Figure
6-1b however, the precedence relations A<C, B<C are needed only
for data hand-off purposes, i.e., tasks A and B have to create
proper Tl and T2 respectively before task C can use them to
compute U, Figure 6-1lc demonstrates the problem of independent
tasks sharing common data base. Data X is needed by both tasks
A and B. If processed in parallel, A, B will likely experience
running time delays. Duplicate X seems to yield a solution;

however, it creates other problems such as lock-out problems
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when X needs up-date, which copy should be accessed by what
task, etc. In short, the use of a common data base to conserve
storage, to enforce unified programming and to achieve the
efficient operation of a multiprocessor system, cannot be ob-
tained without any compromise. This complex problem is beyond
the scope of our study, and we shall assume that no common data
base exists among independent tasks for the rest of our study.

Program structures are traditionally hierarchical in
nature. Parallel processes exhibit similar hierarchical struc-
tures. Parallelism can exist at instruction level, procedural
statement level, and program level, etc. We shall assume that
parallelism in our study occurs at the task and program level.
Task is defined as a program segment chosen by the nature of
the work it performs such as counting, searching record for
up-dating, matrix computations, etc. Program is a piece of code
to achieve certain major functions in an application, e.g.,
target tracking in an ATC system. A typical system represented
by a hierarchical structure is illustrated in Figure 6-2.

A1l programs and data base are assumed to be core resi-
dent. File transfer, overlap; baging, etc., will not be con-
sidered here. To this end, memory allocation is static whereas
task scheduling is dynamic in nature. Hence, the memory alloca-
tion process is carried out at program load time whereas task
scheduling is carried out by the executive routine while the

system is running.

6.2 DYNAMIC SCHEDULING HEURISTICS

Since one of the memory allocation heuristics depends
on the results of scheduling, we will delay the discussion on
memory allocation until scheduling schemes are introduced.

Let us review again Cases 1 and 4 of our timing anomaly
study made previously in Section 5. In trying to find an answer
for the increase in task set running time with the decrease of
all individual task execution time, we found that the longest
chain length (consisting of Tl, and T9) was broken. In addition,
the scan rule picks T2 and T3 before T4 is executed. While T2
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and T3 are independent, having no precedence relation with other
tasks, T4 has four successors.

It is then immediately apparent that there are two
heuristics at hand which may yield good schedules. They are:

1.. Schedule task which currently leads the longest

precedence path (LLP);

2. Scheduling task which currently leads the largest

successor group (LSG).

The formal definitions of LPP and LSG are to be given in
the following paragraphs:

Let i represent a task and ts be the processing time re-
quired by task i. For a given program graph, the processing
times of the starting task s and the end task e are represented
by tg and to, respectively. A path of task i is defined as a
sequence of tasks traversing from starting task i to end task e.
A Precedence Path is then the total processing time required to
traverse from task i to task e.

Let Xi' be the jth task sequence that makes a path from

! starting task i to end task e, j = 1,2,..., n
where n is the number of distinctive paths
between task i and task e.
Let X; be the set of paths between task i and task e.
Then, the set of Precedence Paths between starting task i and
end task e can be presented as
PP(ij) = (tk)
kinj
and the Longest Precedence Path of task i is
LPP(i) = Max[ I (tk) ]
o~ kEXi .
Let the binary relation A<B be defined as task A immediately
preceding task B, and binary relation A<<B be defined as task A
preceding task B. It then follows that
1. If A<B, then A<<B,
2. If A<<B and B<<C, then A<<C

<< is a transistive binary relation.
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The set of successor tasks of task i written as S(i) is
defined as S(i) = {j|i<<j}. Given the relation i<j, a set of
Successor Groups of task i is defined as the set of total pro-
cessing times of task j and its successor tasks S(j). It is
expressed as:

SG(i) = = . (tk) + tj
keS(j)
and the Largest Successor Group of task i is

LSG(i) = Max[ E (tk) + t.]
»~j keS(j) J

These heuristics will certainly reduce timing anomalies
if there are as many parallel paths as there are processors.
When the number of processors is less than the number of parallel
paths in a program (program and task-set will be used inter-
changeably), it creates a complicating yet important factor. As
reported by Ramamoorthy, Chandy and Gonzalez°? it is sometimes
optimal to keep a processor idle even when there are tasks that
can be executed immediately. An example program graph is shown
in Figure 6-3 and its optimal schedule with two processors in
the form of a Gantt Chart in Figure 6-4. However, timing anomaly
occurs when we try to keep all processors busy as much as pos-
sible and this is illustrated in Figure 6-5. The reasons are:
first, we have less processors (in this case 2) than parallel
paths (3), and second, a task in a less critical path (task 6)
happens to be available and assigned to processor 2 before tasks
in critical path(s) can be made available, Critical paths are
made of sequences of essential tasks which can be identified by
examination of early and late partitions. In the example, the
early (E) and late (L) partitions are expressed as

E= ( {1} {2,3} {4,5,6} {7,8} {9} )

L= ( {1} {2} {3,4,5}, {6,7,8} {9} )
The number of partitions (levels) in both E and L partitions are
the same for a given program graph. Let i be the level index,
then EiQLi are the essential tasks in level i. The essential
tasks in this example are tabulated as follows:
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Figure 6-3 Sample Program Graph

Pl 'rl/l[T:/z | T4/20 | T7/40 ’ ITQ)’II

v2 Vv ms/20 | 78/30 | =6/10 |

Figure 6-4 An Optimal Schedule for the Sample Graph

Pl |T1/1]|72/2 |  ras20 v T7/40 lrs /1|

v2 U/ Avasilrezio | wsz20 | T8/30 272777777

Figure 6-5 Schedule that Assigns Task-Processor Pair
as Soon as They Become Available
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Level Index Essential Tasks

1 1
Level Index Essential Tasks
2 2
3 4,5
4 7,8
5 9

Tasks 3 and 6 are non-essential tasks. Hence non-essential
tasks can be delayed to make room for essential tasks to be
scheduled for the purpose of timing improvement.

Given a program graph, when the first available task
first served strategy and LPP followed by LSG heuristics are
used for scheduling, the resulting Gantt chart is consistent
with E - partition (Figure 6-5). If we reverse the directions
of all arrows in the given graph, as indicated in Figure 6-6,
and apply the same scheduling strategy starting from task 9
and ending at task 1, the resulting Gantt chart is consistent
with L-partition which is shown in Figure 6-7. Comparing
these two Gantt charts, it is apparent that L-partition based
scheduling is an optimal approach. This means that in an
actual program run, the original graph, as opposed to the re-
verse one, should be followed, and some of the non-essential
tasks (task 6) should be kept as late as possible for its exe-
cution. Please note that the E or L-partition alternatives
for the execution of task 3 does not affect the overall program
execution time. One way to delay non-essential tasks is to
impose 'pseudo precedence relation (s)" on them based on the
timing relations shown in the L-partition derived Gantt chart.
Figure 6-7 shows that task 6 should be executed after tasks
4 and 5, hence it is recommended that pseudo precedence rela-
tions be established from tasks 4 and 5 to task 6.

In our example, we created a dummy task TD with execu-
tion time 0 to simplify the representation of precedence
relations between parallel predecessors and successors. The
set of relations

T4<T7, T4<T8
T5<T7, T5<T8
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Figure 6-6 Reverse Program Graph for L-Partition Schedule

p1 |ri/alray2 | 74/20 | 17/40 | ros1l

v2 V7 A T5/20 |re/10 | T8/30 m

Figure 6-7 L-Partition Schedule
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6.3 MEMORY ALLOCATION SCHEMES

By now, we realize, on the one hand, that tasks in a multipro-
cessor should be processed in parallel as much as possible. On the
other hand, care should be given to the allocation of tasks in mem-
ory modules so that potential memory conflict during program execu-
tion is minimized, if not eliminated. For ease of discussion, let
us assume that all memory modules are divided into an equal number
of equal-sized pages. Furthermore, we assume that each task occu-

pies only one page of memory space.

Given N tasks to be allocated into N pages, a feasible solu-
tion to the problem is any permutation of (1, 2, 3, ---, N) where
a permutation (T3, T,, Tz, ---, TN) corresponds to placing task Tj
in page 1, task T, in page 2, etc. An exact solution may be obtained
by considering and evaluating all N! permutations. Assuming a 12-
task problem being examined at a rate of 1 millisecond for one per-
mutation, a 12! evaluation process would require about 100 hours
which is not only costly but also impractical. Alternately, a dy -
namic programming approach, after Karp and He1d65, could also
provide a feasible solution. Placing n tasks into n memory pages
is a sequential decision process which is a finite automaton with
a certain cost structure superimposed. The states of the automaton
are represented by all the subsets of the unordered set {Ty, T,, Tgx,
---, Tp}, which have clearly 2" states. The cost of a state {Tq1,

Tz, ---, Ti} is defined as the minimum cost of all permutations of
Ty, Ty, ---, Ti. As a result, the cost of the '"final state"
{T1, T2, T3, ---, Tn} is the cost of the minimum solution. Since

all 20 states must be examined and all permutations associated with
each state evaluated, this algorithm possesses a run-time growth
rate at least proportional to 2N, When n gets to be large, the com-
putation commands a certain respect. Since both exact solution al-
gorithms possess demanding computation requirements, a search for

simple heuristic procedures is highly desirable.

The single important and dominating heuristic rule in memory
allocation is to place sequential (or dependent) tasks in the same
memory module and parallel (or independent) tasks in different
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memory modules. Given a program graph G, tasks P and Q may be
placed in the same memory module if and only if there is a path bet-
ween P and Q. In addition, there are other practical factors to be
considered such as a number of memory modules and number of proces-
sors in the system. We propose two memory allocation schemes of
which one is memory-oriented and the other is processor-oriented.

* TD/0 = DUMMY TASK
RUNNING TIME 0

Figure 6-8 Program Graph with Added
Pseudo Precedence Relation
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6.4 MEMORY ALLOCATION BASED ON PRECEDENCE PARTITIONS (MAPP)

Given a program graph G, it can be segmented into pre-
cedence partitions. Whether they are E-partitions or L-parti-
tions, the number of partitions in a given graph is fixed. An
essential task at partition i is defined as a task in the set
(EPiﬂLPi). If a task appears in both EPi and LPj, then the
partition difference index (PDI) equals j-i.

Let us assume that all memory modules are divided into
equal pages, and without losing generality, we assume that each
task occupies only one page of memory. The MAPP memory alloca-
tion scheme consists of the following steps:

Step 1: Determine E and L partitions (EP and LP)

Step 2: Following EP level sequence (EPl, EP,,...,etc.)
place each task in a partition level in
separate memory modules, assuming unlim-
ited memory modules and pages. The
allocation processes should consider the
essential tasks first., The non-essential
tasks are then placed on a low "partition
difference index" first basic.

Step 3: If the number of memory modules used
exceeds the number of memory modules in
real system, initiate "horizontal folding"
process in which tasks placed in those
excess memory modules are to be relocated
into the empty pages of the actual memory
modules. The fact that horizontal folding
process is required implies more parallel
paths than memory modules. Hence, we are
forced to allocate parallel processable
tasks in one memory module.

Step 4: If in some modules the number of pages
used exceeds the memory pages per module
in real system, 'vertical folding" process
is needed to relocate tasks of those excess
pages into empty pages of other modules in
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the system. The criteria to use here to
find a module with empty page(s) is that
all tasks occupied in that module have to
be able to establish common paths with
the relocating task.
Step 5: This is a clean-up step to see whether
there are still some tasks left unprocessed.
If so, find empty pages and allocate tasks
in them unconditionally.
An example should be helpful at this time. Figure 6-9
gives a rather complicated program graph with 25 tasks. We would
like to allocate these 25 tasks into 6 memory modules with 5
pages per module.
Step 1: E = ({1},{2,3,4,5,6,7,8,9,10,11,12},{13,14,15},{16,17,18},
{19,20,21,22},{23,24},{25})
L = ({1},{5,6,7,8,9,10},{11,12,13},{14,16,17,18},
{15,20,21,22},{2,3,4,19,23,24},{25})

o @M@ A

III

v

VI

VII

Figure 6-9 Sample Program Graph
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Partition Levels Essential Tasks

1 1
2 5,6,7,8,9,10
3 13
4 16,17,18
5 20,21,22
6 23,24
7 25
Partition Difference Index Non-Essential Tasks
6-2 = 4 2,3,4
3-2 =1 llsorbZ
4-3 =1 14
53] = 2 15
6-5 =1 19

Step 2: Referring to the memory map below, at EP level I there
is only one task 1, and it is allocated to memory module
1, page 1. At EP level II, tasks 5,6,7,8,9, and 10 are
essential tasks which are allocated first, one per page
per module. Tasks 11 and 12 have partition difference
index 1 next, and tasks 2,3, and 4 have the highest
partition difference index 4 and are allocated last.

‘1 2 3 4 5 MOE]SDULES.“ 3 9 10 11 l?-
1
2l 5 6 7 8 9 10 11 12 2 3 4
3113 14 15

5] 20 21 |22 19

el 23 24

-| 25

49}
M, 16 17 |18
=9
Ay
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At Level III, task 13 has a common path with tasks 1, and
5, so task 13 is allocated in module 1. Task 14 finds a common
path with task 12, and is allocated with task 12 in module 8.
Task 15 cannot find path with any, and is allocated a new module
12. At Levels IV and V, tasks easily find paths with allocated
tasks hence they are correspondingly allocated. Same argument

goes for tasks 23, 24, and 25.

Step 3:

Step 4:

Horizontal Folding

We have used 12 memory modules and the system has only
6 so the horizontal folding step is necessary which

is taken from right to left. Task 15 found a path
with task 24. Tasks 2, 3, and 4 could not find any
paths and they were arbitrarily placed with tasks 8,
9, and 10 respectively; same argument goes for tasks
11, 12 and 14 and they are relocated in memory modules

5 and 6,

——— MODULES
1 2 3 4 5

L O QOO
©

0
G313 24 @
=
[a¥%)

al16 |17 | 18

21 22 20

51 19

23

25

Only tasks 23 and 25 are outside the page limit in
this example. However, both tasks 23 and 25 found
paths with all tasks in module 2 which has two
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empty pages. The final memory map is thus obtained.

No clean-up job is needed.

<«¢————— MODULES —m ———=

1 2 3 4 5 6
1 1 @ 15 2 3 4
2 5 6 7 8 9 10
@
3113 24 11
: @) 12
4116 17 18 14
l 5119 21 22 20

6.4.1 Memory Allocation Based on Static Scheduling (MASS)

While the MAPP memory allocation scheme is memory-oriented,
MASS scheme is processor-oriented. As previously memtioned, the
number of processors in a system is generally less than the number
of memory modules. We then follow the scheduling algorithm pre-
viously discussed to establish a Gantt Chart showing schedules of
all the processors. A transformation is then made from processor
schedules into an overlap matrix whose entry Xij represents the
concurrent execution time between tasks i and j. Referring back
to Figure 6.4, for example, the overlap index X67 has 10 time units.
Tasks within a processor's schedule are allocated into one memory
module. When one module's capacity overflows, the rest of the tasks
in the schedule are allocated to a fresh memory module. Problems
occur when separate modules are not enough to handle tasks of sepa-
rate schedules which may result in having parallel tasks sharing the
same memory module. A smoothing process is necessary to selectively
swap tasks among memory modules until possible overlaps are elimi-

nated or reduced.
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The MASS memory allocation procedure consists of the following
steps:

Step 1: Allocate tasks of a processor's schedule in a memory
module. When there are more tasks in a schedule than
pages in a memory module, continue to f£ill a new
empty module with the remaining tasks.

Step 2: Start a fresh empty memory module with a new schedule
and continue steps 1 and 2 until one of two condi-
tions occur and then proceed to step 3.

Step 3: The allocation process stops when no more tasks are
left to be allocated. It proceeds to step 4 when
there are tasks unallocated and the fresh empty mem-
ory modules are exhausted.

Step 4: Select an wunallocated task i and compute the sum of
the overlap index I Xij

JeMk
memory module k which has empty pages. Allocate task

with all tasks j in a

i in the memory module k if %2 Xjj equals zero or
jeMy
is a minimum.

Step 5: If I X.., is not zero, consider the possibility of

jeMk
swapping task i in My with task & in M, if and only
if
me (Mp-2) = jeMg-i)

The process repeats for all tasks in M; and for all
memory modules until a swap is made.

Step 6: If a swap is not possible in step 5, relax the criteria
as follows:

swap task i in My with task % in Mp if and only if
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I X < I Xom

im and
me (M- %) me (Mn-£)
) Xi4
z Xg: < je (My-1)
jeMy-i) "7

Repeat steps 4, 5, and 6 appropriately until all
tasks are allocated.

Again, this process is best illustrated by an example. Let
us consider the program graph of Figure 6.8 and try to allocate the
whole task set into three memory modules each of which has three
pages. Referring to the corresponding Gantt Chart shown in Figure
6.7, an overlap matrix is established with the following sparsely

distributed overlap indexes:

Xij 1 i=2,j=3 or i=3,j=2
20 i=4,j=5 or i=5,j=4
10 i=7,j=6 or i=6,j=7
30 i=8,j=7 or i=7,j=8

0 otherwise

We assign the task schedule of processor Pl to module 1 and the

task schedule of processor P2 to module 2 as shown in the following
diagram 1. Take the longest remaining schedule, tasks 7 and 9, and
assign them to memory module 3, diagram 2. After assigning the last
task 8 to memory module 3, diagram 3, task 7 and task 8 have an
overlap index 30. Then, task 8 is checked against all possible
tasks in M1 to see whether a swap is possible. The first task found
in M1 is task 1 and it is determined from the overlap matrix that
task 1 does not interfere with tasks 7 and 9, and task 8 does not
interfere with tasks 2 and 4. Hence, a swap between tasks 1 and 8 is
made and the final memory map is obtained (diagram 4). Note that
there are quite a number of choices of swapping candidates for task
8; all tasks in M1 and tasks 3 and 5 in M2 can all be used to ex-
cahnge with task 8.
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M1 M2 M3 M1 M2 M3

p1 1 3 Pl 1 3 7
P2 2 5 P2 2 5 9
P3 4 6 P3 4 6
7 8 8
9
l “
M1 M2 M3 M1 M2 M3
p1 8 3 7 Pl 8 | 3 7
P2 2 5 9 P2 2| 5 9
P3 4 6 8 P3 4| 6 il
3 4

There are two aspects that are worth noting; first, the pro-
cess always converges. Step 5 looks for the best possible condi-
tion for swapping, i.e., overlap indexes of both modules affected
are zero. When optimal conditions can not be met, step 6 relaxes
the criteria to permit swapping if there are improvements, such as
reduction of overlap indexes, to be gained (in both modules).
Second, there are two major heuristics employed in the process, i.e.,
the initial allocation heuristic and the swapping heuristic. Of
the two, the swapping heuristic is the work horse while the initial
allocation heuristic provides a good starting point that shortens
the overall allocation process. If the initial allocation heuris-
tic is not used, application of the swapping heuristic to different
initial memory maps would yield different results. Referring to
the previous example, a sequential assignment produced memory map
1. The sum of the overlap indexes of M1, M2 and M3 are 1,20, and

30 respectively. The swapping process is performed as follows:

1. Consider the memory module with the highest sum of overlap
indexes, i.e., M3,
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Find the task which produces the highest overlap index,
i.e., task 7.

Following a natural numbering sequence on memory modules
and pages, make attempts to swap tasks with task 7. Con-
sider swapping task 1 with task 7. Although bX X1; = 0

je(M3-7)
but 3 X7, # 0, no swapping is made.

me (M1-1)

4, Consider tasks 2 and 7. We have

Z X7m = E ij =0

me (M1-2) je(M3-7)
Hence, tasks 2 and 7 are swapped to produce memory map 2.

5. Consider M2 whose overlap index sum is 20, and consider
task 4 which produced this overlap index.

6. Again following the natural numbering sequence, consider
tasks 1 and 4. Since

I Xgp = I X35 =0

me (M1-1) je(M2-4)

Then, tasks 1 and 4 are swapped to produce memory map 3.

M1 M2 M3 M1 M2 M3 M1 M2 M3
P1 |1 4 7 P1 1 4 2 P1 4 1 2
P2 |2 5 8 P2 7 5 8 P2 7 5 8
P3 |3 6 9 P3 3 6 9 P3 3 6 9
Sum of 1 20 30 Sumof o 20 o Sumof 45 45 g
overlap overlap overlap
indexes Map 1 indexes Map 2 indexes Map 3
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Note that this final result, map 3, is different from the pre-
vious result obtained with the initial allocation heuristics, al-
though both results yield the optimal solution, i.e., the sum of
the overlap index for all memory modules are zero.

6.5 MORE TIMING CONSIDERATIONS

The individual task running times used in the discussion
so far are assumed to be fixed as either maximum run time or
expected mean value. In reality, most task run times vary from
run to run due to data-dependent loops, branch conditions, etc.
This variation may not present any problem to the system if one
and only one program (task set) is being executed. However,
when two or more programs are active (Figure 6-2) and demand
service, idling processor(s) of one schedule may be called to
execute task(s) of another program which may not release the
processor(s) back to the first schedule soon enough to finish
it in the earliest possible time. In order to solve this pro-
blem, carefully planned system constraints may have to be
established. In a non-real-time environment emphasis is placed
on the efficient operation of the system, which would try to
keep all processors busy at all times at the sacrifice of ex-
periencing run time delays by some programs. In a real-time
operation on the other hand, uninterrupted attention should be
given to those "time-critical" programs such that timing require-
ments can be met. We do not propose any general solution to
this problem, but some of our observations could lead to a
workable control scheme in a real-time system,
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6.5.1 Priority and Urgency Indexes

At present, most real-time systems are priority-driven,
and the priorities are pre-assigned according to some predeter-
mined guidelines. However, in a multiprocessor system with a
complex program mix and system reconfiguration capability, the
conventional role of priority needs to be reviewed. In order
to remove some possible confusion, we will attempt to define
the following notions:

Priority - as a measure of relative importance of a
program with respect to other programs in an
overall system. Hence, priority is considered
to be global in nature.

Urgency - as a measure of attention for service required
by a program in order to meet its deadline
imposed by the system. Hence, urgency is
a local criteria which varies with time.

We further clarify these two terms by saying that priority
is, in a way, static in nature, and urgency is dynamic. As long
as the system capacity is maintained, every program will have
its share of the service. However, when a part of the system
is at fault, and the remaining system resources may not be
adequate to serve the entire system function, some low priority
program (less important) may hot be served at all and hence
dropped off the system, or may be executed in a much lower rate
in a degraded fashion. The urgency index on the other hand works
on a "moment-to-moment" basis and reflects properly the degree
of the pressing needs of attention of the individual programs.
Each program has a priority index and an urgency index assigned
to it. Once the assignment is made, all tasks within a program
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have the same priority and urgency indexes. The study of how

a system should behave in case of partial failure is a complex
and separate problem which is beyond the scope of task scheduling.
We are to limit our attention to the treatment of urgency in

terms of task scheduling only.

6.5.2 Hierarchical Multiprocessing

The hierarchical program structure demonstrated in
Figure 6-2 clearly suggests the possibility of hierarchical
multiprocessing, i.e., simultaneous processing of tasks of two
or more programs. The point is how to control such an operation
so that system resources are efficiently utilized (keep all
processors busy, as much as possible) and yet meet program timing
requirements. Fortunately, not every program in a real-time
system is ''time-critical"™. Even if they were all time-critical,
they do have variations in the degrees of urgency. ARTS air
traffic control, for example, has five major functions: key-
board input processing, display output processing, interfacility
processing, target detection and tracking. Of the five, only
target detection and tracking functions are truely time-critical.
Both keyboard and display require real-time response; however,
the effect of slight delays in performing these functions is by
no means catastrophic. As far as target detection and tracking
are concerned, they perform in a different periodical basis on
which the target detection program is run once every 2.5 ms,
and the tracking program is run once every 125 ms. The higher
urgency index is then given to the programs with a high execution
rate. A workable scheme would be to allow non-time-critical but
time-sensitive programs (e.g., keyboard and display processings)
to share all system resources, whereas all system resources are
dedicated to those time-critical programs such as target detec-
tion and tracking. The activation of the periodic programs are

by means of external interrupts.
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6.6 IMPLEMENTATION APPROACH

Several schemes of memory allocation and task scheduling
were given in previous sections. Some discussion is in order to
see how these schemes can be put together to establish a workable
system. Key elements needed here are ways to describe available
system resources and structures of the functional programs and
tasks, which can be achieved through the use of tables. The
System Resource Table specifies such items as number of memory
modules, pages, processors and I/0 channels, as well as various
I/0 devices. The Program Structure Table specifies the prece-
dence relations, urgency index, and many other important attri-
butes which are tabulated as follows:

Program/Task Name ™
Urgency Index

Priority Index

Task Execution Time >- 1
Longest Precedence Path
Largest Successor Group
Predecessor Table Pointer
Successor Table Pointer o,

Memory Assignment ™\

Memory Module Numbers

Module Page Numbers 2
Protection Keys
Etc.

I/0 Assignment N

1/0 Channels
Device Numbers
Etc.

Status >» 3

Inactive

Ready for Process

In Waiting

In Process

Etc. o
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This table is organized on a task basis. Part 1 is
furnished by the system designer/programmer. Based on part 1
and the system resource table, the operating system at program
load time generates a memory assignment map, part 2, using one
of the memory allocation algorithms described previously. Part
3 of the program structure table is of cource dynamic in nature,
and is assigned and updated by the Executive program during run
time.

In a multiprocessor-multitask environment, especially
when tasks have real-time demand, events occur at times which
are unpredictable, and sequences in which programs are executed
change constantly. The executive program of such a system finds
itself constantly doing bookkeeping chores, such as set task X
active, put task Y onm a queue for an I/0 channel, time to exe-
cute task Z because the record it requested from file has just
been read in core memory, etc. The bookkeeping chores imply a
lot of search operations going on by the Executive Routine, such
as; Who has the highest priority? Who has the highest real-time
urgency index and needs attention from the system immediately?
Who has the maximum LPP and/or LSG. Conventional executives
(or supervisor, master control, etc.) carry out this type of
function by searching through a list in core item by item, which
means a lot of repetitious time-consuming overhead computer time
wasted.

This type of function is ideally performed in an asso-
ciative processor. Although PAP is originally proposed for high-
speed parallel processing of application programs, there is no
reason why it could not be time-shared for executive control as
well, especially the multiprocessor system which would have two
or more PAP's connected. The whole program structure table can
be stored in an associative memory. There are a number of ways
of organizing such a table. A simple structure is used here to
demonstrate the versatility of associative memory. Each entry
of the program structure table, corresponding to a task, is
stored in an associative memory word which is divided into a

number of fields. Each field is corresponding to an attribute
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which describes the task. The word format is shown in Figure
6-10.

ENTRY TASK PRIORITY URGENCY RUN LPP LSG
TYPE NAME INDEX INDEX TIME
PREDECESSOR SUCCESSOR MEMORY STATUS
POINTER POINTER ALLOCATION

Figure 6-10 Associative Memory Word Format
for Executive Control

The "ENTRY TYPE" field is used to enable the sharing of
an associative memory for various types of storage purposes. It
is this field that could distinguish, for instance, an aircraft
track record from a program structure table entry. In the dynam-
ic scheduling process, the executive program would first find
out if there are some '"Ready for Process' tasks by searching the
STATUS field. Finding some, he may search for those with highest
URGENCY INDEX followed by searching for the maximum LPP and
again maximum LSG in order to select the next task to process.
Since every search takes one or a few memory cycles only, system
bookkeeping overhead is greatly reduced. The logic flow of the
scheduling algorithm is illustrated in Figure 6-11.
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PROGRAM IN EXECUTION

: NO
?

Y

0 SELECT TIME CRITICAL
TASKS, READY FOR
PROCESS "STATUS"
MULTIPLE
MATCH
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WAIT
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SELECT TASKS
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SELECT
FIRST TASK
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Figure 6-11 Dynamic Scheduling Logic Flow with
Associative Memory Control




/.0 SIMULATION AMALYSIS AND EVALUATION

When a system of independent processes reaches a certain
degree of complexity, it becomes exceedingly difficult, if not
impossible, for humans to appreciate fully the interactions
among parts of the system and to evaluate the effects of these
interactions. Two systematic approaches are available for
studying complex systems, which can provide some insights so
that an appropriate evaluation of the system can be made. These
two approaches are simulation and analytical modeling.

The differences between these approaches have been dis-
cussed fully in the leterature, and it is fair to state that
each has its advantages. Simulation has the advantage of
describing exactly what is happening in the system being analyzed,
not an average of what might happen. A system being simulated
can be examined during the simulation at any time. There are no
restrictions on the analysis of simulation data, while the types
of statistics available from analytical modeling, e.g., queuing
theory studies are often limited. Disadvantages of simulation,
as contrast with queuing theory, include lack of generality, the
output describes the system behavior only for the given initial
conditions, which may not be typical. The effect of this can
often be offset only at the expense of large amounts of computer
time. Programming requirements are also large, since each part
of a complex system needs normally to be modeled separately.

For the investigations of real-time systems conducted here, in-
terests are focused on the examination of the '"worst case"
condition of program execution time due to timing anomalies and
memory conflict. Hence, simulation is selected to exercise
specific memory allocation and task scheduling heuristics and

to observe effects on program execution times.

7.1 THE SIMULATION STRUCTURE

Most languages written expressly for the purpose of
simulation tend to be too general and inefficient in their use
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of computer time, inflexible in input-output or difficult to
learn. For ease of use, programming simplicity, and easy adap-
tation to most machines, an event-driven simulation language

GASP is used for our simulation. Strictly speaking, GASP is
nothing more than a collection of FORTRAN subroutines and
functions under the control of an executive which updates attri-
butes of entities in files, advances time counters and collects
statistics on specified parameters automatically. Its simulation
concepts are quickly grasped because they are presented in the
familiar framework of FORTRAN. Appendix A gives a comprechensive

discription of the operation and the facilities of GASP,

7.1.1 Data Structure

Various states of the system under simulation are repre-
sented by a set of tables. There are three basis input tables
to represént a program structure: a Task Description Table, an
Immediate Successor Table and a Precedence Partition Table.
Associated with each task of the Task Description Table are six
attributes as follows:

Execution Time

Longest Precedence Path

Largest Successor Group

Predecessor Number

Predecessor Counter

Immediate Successor Pointer
Initially, the contents of the Predecessor Number and Predeces-
sor Counter are identical. After completion of each of its
predecessors, the Predecessor Counter is decremented by 1. This
task is then ready for execution when its Predecessor Counter
reaches zero. As soon as this task is being executed by a
processor, the Predecessor Counter is reset to its original
value by a Predecessor Number. The Immediate Successor Pointer
is used to link to the Immediate Successor Table so that the
precedence relationship among tasks is established. The Prece-
dence Partition Table is indexed by the partition level number,

whose entries are tasks within each partition level. There are
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two output tables. One is the Memory Allocation Table which is
indexed by the memory module, and page numbers, and the corre-
sponding entries are task numbers assigned to these pages. The
other is the Processor Activity Table which gives a profile of
activities for each processor during the span of each simulation
run. It records the actual start and end times of all tasks
being executed by a specific processor including processor idle
time. Finally, there is a Statistical Output Table which records
such items as memory conflict occurrences, processor idle times,
program run times, as well as a histogram showing the distribu-
tion of the memory conflict which has occurred. Important system
parameters are entered into the system as individual variables.
They are: Number of memory modules in the system

Number of memory pages per module

Number of processors

Number of tasks

Parameter to select memory allocation heuristics

Parameter to select dynamic scheduling algorithms

7.1.2 Program Structure

The multiprocessor simulation program structure is repre-
sented in Figure 7-1. The input tables are used to derive memory
allocations by three memory allocation heuristics. The Memory
Allocation Table obtained is fed to the simulator together with
all input tables. The simulator, selecting one out of three
scheduling heuristic rules, conducts the dynamic scheduling
simulation and collects appropriate statistics at proper time
intervals. Since most of bookkeeping work has been taken care
of by GASP facilities, the major coding for the simulation is to
program the various events which would happen in the system. In
our study, we have only one single event which is the "End-of-
Task'" event. This event coded as a subroutine (NDTASK) is called
by the GASP executive program. Upon entering NDTASK, an active
processor is released after taking statistics. All its succes-
sor's Predecessor Counters are decremented. NDTASK next tests

for task readiness and processor availability. If there are
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tasks ready to be processed, NDTASK schedules tasks by selected
heuristic rules, determines task execution time by adding to
the specified task execution time a generated random number to
represent the variations in task run time, and updates the
Processor Activity Table. It then proceeds to detect memory
conflict, takes statistics on memory conflict time and revises
the task completion time due to this conflict. Finally, it
restores the Predecessor Counter by the contents of the Pre-
decessor Number stored in the Task Description Table, updates
GASP's Event File, establishes the next event and returns to
GASP,

It should be noted that each memory allocation scheme is
a routine reflecting one heuristic rule, which is executed only
once in each simulation, and is called by the GASP main program.
The three memory allocation routines are:

MASQ Memory Allocation via Sequential Assignment

MAPP Memory Allocation via Precedence Partition

MASS Memory Allocation via Static Scheduling
In addition, there are two subroutines supporting those memory
allocation subroutines. Subroutine COPLAT computes the partition
level and allocates task in MAPP, and subroutine OVRLAP detects
and computes the memory overlap time in MASS.

A number of subroutines are also called by NDTASK. Each
heuristic scheduling rule, except the simple sequential heuristic

is carried out by a subroutine. They are:

PPSG = Select Longest Precedence Path first, IF multiple
responses, select one with Largest Successor
Group

WAIT = Same as PPSG except processor waits when possible

memory conflict is detected.
NDTASK also has a supporting subroutine MCFLT which detects and
takes statistics on memory conflict time, and it is used dif-
ferently from subroutine OVRLAP. For detail program logic flow
see the flow charts and program listings documented in Appendix
B.
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7.2 REPRESENTATION OF TASK STRUCTURE

At first, it seems highly desirable to use the actual
set of ATC programs for the input of the simulator. Further
examination of the system led to the belief that the program
design is highly dependent on the computer architecture used in
the system. Since a pipelined associative processor is intro-
duced into a multiprocessor structure which has no resemblance
to the present ATC computers, the use of ATC program structure
as the simulator input is questionable. In addition, the in-
terests of this study are focused on the interrelationship among
program structures, scheduling algorithms, and memory conflicts
with the goal of reducing or eliminating timing anomalies, rather
than solving the timing anomaly problem of a particular program
structure. It is felt that without losing generality, synthetic
test models of program structures may be used. As illustrated
in Figure 7-2, three test models are used. Model #1 is the most
sequential, model #3 is the most parallel, and model #2 yields
a somewhat in-between structure.

Each model is a 16-task program. For our investigation,
we further assume a multiprocessor system of three processors
sharing four memory modules. Without losing much generality,
these memory modules shall have four pages per module, ‘and each
task shall occupy one page only. It is felt that a 3CPU X 4M
configuration has all the ingredients of a multiprocessor system,
and yet it is simple enough for analysis under simulation. No
firm support is claimed in selecting the 16-task structure.
However, one thing is apparent that more tasks offer more oppor-
tunity for multiprocessing which would tend to increase the
system efficiency. On the other hand, more tasks require higher
system overhead which reduces the system efficiency. These
conflicting requirements suggest that the number of tasks parti-
tioned out of a program would not be a very large value. Hence,
16 tasks are selected because they could produce enough multi-
processing activities for three processors and yet they would

keep system overhead at a low level.
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7.3 ANALYSIS OF RESULTS

There are three models each of which will be allocated
into memory modules by three memory allocation heuristics, which
in turn, will be run by three dynamic scheduling heuristics
through the simulator. In all, there will be 27 (3X3X3) simu-
lation runs in.which statistics on program execution time,
memory conflict length and CPU activity time in percentage are
collected, and tabulated in Tables 7-1, 7-2, and 7-3 respectively.

TABLE 7-1 AVERAGE PROGRAM EXECUTION TIME

MODEL #1 MODEL #2 MODEL #3

SEQUENTIAL MASQ 39.60 33.21 26.29
SCHEDULING MAPP 31.34 29.86 25.07
(RULE #1) MASS 31.64 31.30 2l 35
LEENFEEST MASQ 37.43 30.17 26.95
£CHEDULING MAPP 32.30 29.78 25.31

MASS 28. 24.02
GiiE U5 31.46 37
Eg;EEEESEXT MASQ L) 31.84 25.52
R N T MAPP 37.07 29.41 o 70

MASS . . 21.
et 32.29 29.33 1.63

A number of observations can be made upon examination of
this table. In general, programs with sequential or random
memory allocation experience more memory conflict; hence, longer
overall program execution time. Observe the results run on
Model #1 whose program structure is more serial in nature; various
scheduling rules do not seem to have much effect on the program
execution time. This is reasonable because at any instance there
will not be many tasks available to select by various scheduling
rules. The availability of tasks is pretty much determined by
the precedence relationship among tasks. When no specific atten-
tion is paid to memory conflict. This fact is properly reflected
when scheduling Rule #3 is applied, and the system waits a long
time to complete all tasks. The system improves equally well

under either MAPP or MASS memory allocation heuristic. Since
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the program structure is serial, it is relatively easy to allo-
cate tasks out of potential conflict situations regardless of
what allocation rule to use.

In running Model #3 of the parallel program structure,
MASS allocation rule appears to be definitely superior to the
MAPP and MASQ schemes. It is very interesting to note that
regardless of memory allocation, program execution time is mini-
mum when processors are instructed to wait as memory conflict
situations are encountered. This is due to the fact that when a
processor becomes free, the system has more parallel tasks ready
to be executed. If memory conflict occurs in selecting the most
desirable task by LPP and LSG rule, a processor simply goes on
and tries to select the next desirable task to process. Since
Model #3 is highly parallel, there is a high probability that a
free processor will be able to select a task without memory con-
flict. When a MAPP or MASS memory allocator is used, the system
has even better improvement.

The Model #2 runs seem to produce some random results,
as indicated by short program processing times under Rule #1
with MAPP memory allocation and under Rules #2 and #3 with MASS
memory allocation. Since the Model #2 program structure is
neither highly serial nor highly parallel, it is understandable
that its dynamic behavior would not be dominated by either
characteristics. However, one interesting point revealed after
some in-depth investigations, which may provide partial explana-
tion of the system behavior, is the fact that the logic used in
MASS is identical to the logic used in Rule #2; whereas, the
logic used in MAPP is consistent with the sequential scanning
logic used in Rule #1. We intuitively appreciate that the
system would produce better results when the memory allocation
scheme and the dynamic scheduling heuristic are consistent.

It is reasonable to assume that in order to take full
advantage of multiprocessing, programs are to be segmented into
highly parallel structures if at all possible. Under this
premise, we select and recommend that Rule #3 be used as the
scheduling rule and MASS be used to allocate tasks into memory
modules.
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To further compare the simulation results with a set of
optimal schedules, Gantt Charts of the three models are shown in
Figures 7-3, 7-4, and 7-5. Task execution times used in those
Gantt Charts are minimum times. Since a uniformly distributed
random number is added to these minimum task execution times, a
factor of 1.5 should be adjusted to these optimal timing figures.
Let Tpi be the optimal execution time of program i, then

Tpl = 1.5 X 21 = 31.5
sz 1.5 X 18 = 27

T 1.5 X 14 = 21
p3

The minimum program execution times produced by simulation for
Models #1, 2, and 3 are 31.30, 28.37 and 21.63, respectively,
which are very close to the extrapolated optimal value.

Table 7-2 illustrates the memory overlap times which are
consistent with the program execution time. In almost all cases,
sequential memory allocation produces the most severe memory
overlap. Again, when memory allocation logic and scheduling
heuristics are consistent, the least memory overlaps, both in

mean and maximum values, are produced.

TABLE 7-2 MEMORY OVERLAP TIME

MODEL #1 MODEL #2 MODEL #3

Mean Max. Mean Max. Mean Max.
Sequential MASQ 1.15 7.68 0.87 7.43 0.84 5.70
Scheduling MAPP 0.03 2.70 0.35 3.83 0.52 5.78
(Rule #1) MASS 0.10 3.37 0.58 4.55 0.46 3.34
LPP First Then MASQ 0.84 6.09 0.38 5.11 0.97 5.43
LSG Scheduling MAPP 0.25 4 .44 0.24 3.40 0.70 6.43
(Rule #2) MASS 0.08 3.44 0.09 28,8} 0.50 3.45
Select Next LPP MASQ - - = - = -
When in MAPP - - - = - =
Conflict MASS = - = - - -

LERule #3)
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TABLE 7-3 PROCESSOR ACTIVE TIME (%)

MODEL #1 MODEL #2 MODEL #3

1 2 3 1 2 3 1 2 3
Sequential MASQ 99 70 57 96 72 75 95 83 85
Scheduling MAPP 95 70 58 96 74 %3 93 83 81
(Rule #1) MASS 96 72 57 98 72 75 97 80 82
LPP and LSG MASQ 94 80 50 94 69 75 99 84 85
Scheduling MAPP 94 81 52 90 70 72 95 85 83
(Rule #2) MASS 95 72 56 93 70 70 98 83 81

Select Next
LPP When in
Conflict
(Rule #3)

MASQ 87 52 19 90 61 55 92 72 51
MAPP 97 66 29 94 63 64 95 76 70
MASS 97 79 38 93 66 62 92 83 80

Study of Table 7-3 further confirms the observations
made in previous paragraphs. It is interesting to note that most
short program execution times accompany low processor utiliza-
tions which means efficient system performance. When more than
one free processor is competing for available tasks, the scanning
logic considers the low indexed processor first. Consequently,
the utilization factor of processor #1 is always the highest.

In summary, we recommend that programs in a multiproces-
sor environment should always be segmented in a highly parallel
structure. Individual tasks are to be loaded into memory modules
by the static scheduling rule based on selecting the task with
the longest precedence path first heuristic. If more than one
task displays identical LPP's, then select the task with the
largest successor group to be scheduled. This same LPP followed
by LSG heuristic is to be applied to the dynamic scheduling rule
also; however, in addition, in the case of memory conflict, the
same rule should be applied again to select the next desirable
task according to its LPP and LSG. If none is available, the
processor should elect to wait. This combination yields a near
optimal result with no memory conflict at all and a good portion

of processor time free to spare. The processor spare time would
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be used to handle interrupts so that external demands could be
met.
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8,0 SUMMARY AND CONCLUSION

8.1 TECHNOLOGY ASSESSMENT

The heart of the Associative Pipeline Multiprocessor
System (APMP) is the associative memory array. The idea of a
memory with content-addressable capability dates back to the
early 50's and has always enjoyed a great deal of attention in
the computer community through the years. Unfortunately, it has
not yet reached the maturity to be widely accepted and implemented
in computer systems; this is mainly because of the high cost.

The basic associative memory array has been considered and recon-
sidered many times in various technologies such as cryogenics,
multiaperature cores, tunnel diodes, and plate wires. The cost
of these schemes was too high to allow widespread use of the
associative memory.

With the advent of LSI technology and its rapid growth,
the associative memory once more enjoys a renowned popularity
since the number of a few additional circuit elements of a
memory cell no longer influences the cost of the overall memory
system. In fact, a few semiconductor manufacturers are offering
associative memory array packages as their off-the-shelf items.
Fairchild and Intel offer a 16 x 16 TTL AM package with a 30 ns
access time. TI is marketing a MOS AM package which has a 16
eight-bit word organization and a 200 ns access cycle time.
Honeywell developed a 256 word by 64 bit associative memory
system using TI chips for the National Aeronautical and Space
Administration. This MOS AM array requires complex driving and
sensing circuitry to interface with outside TTL logic. The over-
all cycle time is about 350 ns. These AM arrays have '"true"
parallel search capability. By this we mean that the search is
carried out in parallel within a field over all words. Goodyear,
on the other hand, has developed a number of associative memory
systems for the U.S. Air Force using plated wire technology.

The search technique adopted is carried out on a bit-column

basis over all words in parallel. To search on a field, the

118



technique has to perform bit-column searches sequentially until
the entire field is covered. Recently, Goodyear has developed
an ingenious method of realizing associative memory operation by
means of random access memory arrays. Since it is still company
proprietary information, the system implications and ramifica-
tions are not known at this time. General Electric recently
reported their successful laboratory development of a 512-cell
MOS associative array organized 32 words by 16 bits on a chip.
The read/write as well as match cycle times are 200 ns; and the
associative memory array interface is TTL compatible. This
latest development has made a great stride in operating speed,
interface flexibility and cell size reduction which could con-
ceivably bring the cost down to an attractive level such that
associative processing techniques could be economically incor-

porated into new computer systems.

8.2 FUTURE RESEARCH AREAS

This study has identified an environment, proposed a
computer architecture for its application, acknowledged a few
key problem areas and suggested an heuristic approach for their
solutions. Due to the complex nature and wide scope of the
subject matter, a number of interesting aspects were intention-
ally left unanswered. In order for the associative processor to
have widespread acceptance, there is an urgent need to develop
denser, less costly, and faster AM array chips in solid-state
LSI technology. Unlike the random access memory, the building
up of a workable associative memory model out of AM array chips
presents a non-trivial interconnection and packaging problem.

The entire error handling philosophy deserves undivided
attention. The question of optimal schemes for error detection,
location and isolation, remains open. Once an error has been
detected and isolated, the question of signaling the failure to
the system is also pertinent so that the failed instruction may
be retried. When unsuccessful, the task may be restarted from
an appropriate roll-back point, automatically perhaps. If a
failure persists, the system would automatically reconfigure the
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overall resources into either a fail-safe (when spares are
available) or a fail-soft (system performs at a reduced capacity)
mode of operation.

Given a multiprocessor configuration, how should a
program be segmented into task-set in order to achieve efficient
operation? The results obtained by our simulation seem to indi-
date that the more parallel tasks a program can be segmented
into, the more efficient this system is. However, with system
overhead, associated with the execution of tasks, it is likely
that there is a point of diminishing return beyond which further
segmentation decreases the system efficiency. Working at a
lower level, how should a task be structured in order to execute
multiple data sets in parallel taking full advantage of the
pipeline associative processor's capability?

When there are not enough processors to cope with active
tasks, sharing multiprocessor resources among independent tasks
of independent programs would still produce unpredictable timing
anomalies. Although some conjectures were made in Chapter VI,
further study in great depth is needed to provide better work-
able schemes than simple priority because this problem is
particularly akin to real-time applications.

The least known subject in multiprocessing and parallel
processing is in the area of programming language. At present,
most parallel processor manufacturers are working on fundamental
assembly languages. To this author's knowledge only two attempts
in developing higher level languages for parallel machines are
being made by Bell Telephone Laboratories in Parallel FORTRAN
and by Sanders Associates in APL. In brief, the development in
this area is still in the embryonic stage, and it certainly
offers tremendous opportunity for further research.

8.3 CONCLUSIONS

The U.S. Continental air traffic control automation
system was chosen to provide a real-time application environment.
One of the major contributions of this study is the formulation
of a novel computer architecture to achieve greater performance

improvement over the present ATC automation system by parallel
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processing. The heart of the computer structure is an associa-
tive memory capable of simultaneous search on selected fields
over all storage words. To augment the associative memory with
fast arithmetic capability, a high-speed arithmetic unit is
integrated in with the associative memory module, and is capable
of processing multiple data streams under the command of a single
instruction. It is difficult to dispute the power of the asso-
ciative memory in terms of logical parallel processing. However,
in appraising the arithmetic parallel processing power of an
associative memory, carried out in a bit-column basis, common
opinions hold that associative memory works well only when the
number of data sets in extremely large. The streaming of pipe-
lineing technique proposed in this study would set this argument
to rest when a data set of moderate size came streaming through
the arithmetic unit at high speed.

For the reasons of system availability and modular ex-
pandability, this associative pipeline processor is proposed to
connect with conventional processors and random access memories
forming a multiprocessor organization. In a complex real-time
application such as air traffic control, various functions can
be categorized according to their processing characteristics.
Regular and periodic parallel processing tasks with multiple
data sets are assigned to PAP modules, whereas conventional
processors take on those jobs arriving in random and of sequen-
tial nature. Problems associated with multiprocessors are re-
viewed with particular emphasis on execution time anomalies and
memory conflicts. A directed graph model is used from which
simple heuristic rules are established for memory allocation and
dynamic task scheduling, so that near optimal performance can be
achieved with minimal system overhead. The memory allocation
and heuristic scheduling schemes are simulated. The results
analyzed closely follow the predicted system behavior.

Finally, the dynamic scheduling algorithm can be imple-
mented by means of storing essential system parameters associated
with each task in an associative memory module. Taking full

advantage of the search capability, the executive routine could
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schedule tasks and update system table entries in the shortest
possible time; hence, it further reduces system overhead. Tech-
nology risks in the fabrication of associative memories are
assessed, and none are found, except that the cost is still a
major hurdle.

There are many areas of research still open with respect
to this associative pipeline multiprocessor structure, to say,
nothing of the many possible alternative parallel processor
structures. To most of the questions, there are no pat "right"
or "wrong' answers., There are, rather, trade-offs to be investi-
gated and techniques to be developed. The analyses and methods
proposed in this study are believed to be of direct usefulness
in the design of the next generation of computers.
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APPENDIX A
GASP II - A FORTRAN-BASED SIMULATION LANGUAGE



INTRODUCTION

GASP II is a practical and useful simulation language
particularly designed for discrete-event simulations. Being
FORTRAN-based, it is relatively easy to learn due to the fact
that GASP II is nothing more than a group of FORTRAN subroutines
and functions. Its simulation concepts are quickly grasped
because they are presented in the familiar framework of FORTRAN.

This language has developed over the past seven years
at Arizona State University from the original GASP developed at
U.S. Stee164. The versions of GASP introduced here are written
in FORTRAN IV for the H-516 computer. GASP II has also been
used extensively on IBM-1130, GE, and CDC series computers, and
is being used at many universities, industries and government
installations.

The GASP Program Structure

GASP depicts the system under simulation as made up of
entities that are described by attributes, and are related
through the use of files. The status of the simulated system
can be changed if entities are created or destroyed, if attri-
bute values change or if file contents are altered. When a
change of state of any element causes a change of status in the
overall system, it is called an Event. To further clarify these
definitions, let us examine a customer-server queuing system.
Customers and servers are entities. Arrival rates and service
rates are the corresponding attributes. Arrival of a customer
and end of service, which change the system status are considered
to be Events.,

GASP, which consists of twenty-four FORTRAN subprograms,
is organized to provide six specific functional capabilities
required by every simulation:

1. Event Control

2 Information Storage and Retrieval
3. System State Initialization
4

Program Monitoring and Error Reporting
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5. Statistical Computations and Report Generation

6. Random Variable Generation
and a timing mechanism which sequences automatically the simulated
system from event to event. In a real sense, GASP should not
be called a simulation language but rather a set of facilities
which make a simulation job much easier.

Figure A-1 illustrates a typical GASP program high-lighting
the interaction between those programmer written program segments

and those facilities provided by GASP.

THE FILING ARRAY-NSET

The heart of the GASP program structure is a two-dimension-
al filing array called NSET. The term entry, represented by
columns of NSET, is used to describe events and entities whereas
rows are used to store the associated attributes. The last two
rows, however, are used to store two positional pointers which
indicate the relative position of the entry with respect to
other entries in the same file. These pointers are called pred-
ecessor and successor pointers.

Figure A-2 illustrates an example of an NSET (6,9) array.
In this figure we see that column 3 '"points" to column 9; i.e.,
the value in the successor row of column 3 is 9, which means
that the entry in column 9 comes after the entry in column 3.

The predecessor value for column 3 is 9999. This is a code that
indicates there is no entry before the entry in column 3. When
an entry has a predecessor value of 9999, we say it is the first
entry in the file. Each file has a first entry, which is defined
by the variable MFE. MFE is a one-dimensional array with as many
elements as there are files in the filing array.

The code 7777 is used to indicate an entry that has no
successor and, hence, is the last entry in the file. We see that
the entry stored in column 5 is. the last entry. Variable, MLE,
is used to define the last entry of a file. MLE is a dimensioned

variable, and there is a last entry associated with each file.
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GASP EXECUTIVE

0f the twenty-four FORTRAN subprograms, one is SUB-ROUTINE
GASP (NSET) which is the master control routine. It starts the
simulation, selects events, sequences time, controls the monitor-
ing of intermediate simulation results and initiates the print-
out of the final output when the simulation has been completed.
Subroutine GASP is called only by the main program, which is
written by the programmer. After control is turned over to the
GASP for a simulation run, it is not returned to the "main"
program until the run is completed.

Referring to Figure A-3 GASP first calls subroutine DATAN,
which initializes all GASP COMMON variables. DATAN also reads
in initial events and initial file entries. The initial file
status is printed by GASP, using subroutine MONTR. GASP begins
a simulation by using subroutine RMOVE to remove the next (first)
event from the event file; thus, at least one initial event must
be inserted into the event file in subroutine DATAN. The event
file is always file number 1. The statement CALL RMOVE (MFE(1),
1,NSET) removes the next event and stores its attributes in ATRIB.
The time of an event and the event code must be the first two
attributes of an event stored in the event file, Therefore,
ATRIB(1) and ATRIB(2) are given these values, which GASP transfers
to the variables used to describe current time TNOW, and the event
code JEVNT.

Next, a test is made on the event code to determine if
the event selected is a monitor event or a programmer's event.
GASP II defines two event codes for monitoring. Event code 100
causes JMNIT, a 0 or 1 variable, to change value. If JMNIT is
1, each event is printed as it occurs. Event code 101 causes a
call to be made to subroutine MONTR, which is used for debugging
and to obtain intermediate results. A programmer can modify
MONTR to obtain additional information during a simulation.

If the event code is less than 100, an event written by
the programmer is to take place. GASP calls the event subroutine
through the subroutine EVNTS, which is also written by the
programmer. The event code is transferred to the subroutine



SUBROUTINE GASP (NSET)

Y

INITIALIZE GASP

VARTABLES AND —

SET UP FILES*
(DATAN)

Y

PRINT FILING ARRAY (MONTR)

Y

5= DBTAIN NEXT EVENT (RMOVE) |-

Y

UPDATE CURRENT
TIME THOW AND
EVENT CODE JEVNT

TEST
(EVENT CODE-100)

Y

GO TD
PROGRAMMER CHANGE VALUE PRINT PILING
EVENTS OF JMNIT ARRAY (MONTR
(EVNTS) ¢ }

- v

Y

YES
15 RUN ccnm,mgn?>—

A

FINAL REPORTS
{SUMRY AND OTPUT)

ARE

EVENTS?

MRE
MORE RUNS TO
BE MADE?

YES

MONITOR EVENTE
(MONTR)

*THE GASP SUBPROGRAMS EMPLOYED TO HELP ACCOMPLISH THESE FUNCTIONS ARE
GIVEN IN PARENTHESIS,

Figure A-3 General Flow Chart of Subroutine GASP
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EVNTS as an argument. Subroutine EVNTS calls the appropriate
event. After the functions associated with the event are com-
pleted, control is returned to GASP through the subroutine EVNTS.

At this point, codes are checked to determine whether
the simulation is completed. If MSTOP (recall GASP constants
are initialized in DATAN) is zero, a special event must be writ-
ten to end the simulation. This event should set MSTOP to 1
to end the simulation run. If MSTOP is greater than zero, the
simulation is completed when TNOW is greater than or equal to
TFIN. TFIN is a GASP variable defining the ending time of the
simulation. (TFIN is not used at all when MSTOP is zero.) When
TFIN is used as the stopping condition, subroutine SUMRY is
automatically called to compute and print the final GASP reports.
Subroutine OTPUT is also called. OTPUT must be written by the
programmer; it is used to allow the programmer to print infor-
mation not produced by subroutine SUMRY. If it is desired to
bypass SUMRY and OTPUT, the control variable, NORPT, should be
set greater than zero. If SUMRY and OTPUT are desired, set
NORPT equal to zero.

When the final reports have been printed by SUMRY and
OTPUT, one simulation run has been made. The variables NRUN
and NRUNS are used to indicate the simulation run number and the
number of runs remaining (including the one being made). When
NRUNS is 1, control returns to the main program, where it is the
programmer's responsibility to do one of the following: (1) call
EXIT, (2) reinitialize non-GASP variables and then call GASP,
or (3) call GASP. As long as NRUNS is greater than 1, DATAN is
called. A control variable NEP specifies the GASP variables that
need to be reinitialized by DATAN. This is explained in the
discussion of DATAN. Through this procedure, a number of runs
can be made with the same initial values of the non-GASP variables
and then another set of runs made with new initial values for
some or all of them. NRUNS is initialized in a READ statement

in subroutine DATAN. When NRUNS equals zero, execution is stopped.



NAME

HUSS
NDTASK
MCFLT
PPSG
WAIT
MASQ
MASS
OVRLAP

MAPP

COPLAT

DESCRIPTION

Heuristic Scheduling Simulation Program
End-of-Task
Memory Conflict Detection

Longest Precedence Path (LPP) First

Followed by Largest Successor Group
(LSG) Rule

Use PPSG Rule, Let Process Wait
If Memory Conflict

Memory Allocation via Sequential
Assignment

Memory Allocation via Static
Scheduling

Compute Memory Overlap

Memory Allocation via Precedence
Partition

Compute Partition Level and Allocation

FLOW CHART
FIGURE

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

B-1
B-2
B-3

B-6

B-7
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Figure
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GASP SUBPROGRAMS

A functional breakdown of the GASP II subprograms is
shown in the following table. The GASP executive controlling
the overall simulation, has been introduced in the previous
section. Subroutine DATAN initializes all GASP variables and

reads all initial events and entities into the filing array NSET.

FUNCTION SUBPROGRAM
GASP Executive SUBROUTINE GASP (NSET)
Initialization SUBROUTINE DATAN (NSET)
Information Storage
and Retrieval SUBROUTINE SET (JQ,NSET)
SUBROUTINE FILEM(JQ,NSET)
SUBROUTINE RMOVE (KCOL,JQ,NSET)
SUBROUTINE FIND(XVAL,MCODE,JQ,
JATT, KCOL,NSET)
Data Collection SUBROUTINE COLCT (X,N,NSET)
SUBROUTINE TMST (X,T,N,NSET)
SUBROUTINE HISTO (X1,A,W,N)
Statistical Computations
and Reporting SUBROUTINE PRNTQ(JQ,NSET)
SUBROUTINE SUMRY (NSET)
Monitoring and Error
Reporting SUBROUTINE MONTR (NSET)
SUBROUTINE ERROR(J,NSET)
Random Deviate
Generators SUBROUTINE DRAND (ISEED,RNUM)

Other Support Routines

FUNCTION UNFRM(A,B)
FUNCTION RNORM (J)
FUNCTION RLOGN (J)
FUNCTION ERLNG (J)

SUBROUTINE NPOSN(J,NPSSN)

FUNCTION SUMQ(JATT,JQ,NSET)
FUNCTION PRODQ(JATT,JQ,NSET)
FUNCTION AMIN (ARG1,ARG2)
FUNCTION XMAX(IARG1,IARG2)
FUNCTION AMAX (ARG1,ARG2)
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Data Collection

Three subroutines are provided for collecting data during
a simulation. Subroutines COLCT and TMST are used to collect
data from which estimates can be made of the parameters of a
distribution describing the variables of a simulation. The
minimum and the maximum values of the variables are also computed.
Subroutine HISTO is used to classify values of a variable into
given cells for preparation of a histogram showing the frequency
with which the variable was within a given range. COLCT, TMST,
and HISTO each collect data throughout a simulation run. For
each variable that data is collected, subroutine SUMRY prints
out the appropriate information at the end of simulation.

Subroutine COLCT and TMST are used to collect information
on two different types of variables. When the value of a
variable is a sample value of an attribute, subroutine COLCT is
used. Examples would be the waiting time of a customer in a
queuing situation or the test score of a student in a simulated
classroom. A value of a variable that has persisted over a
period of time can be collected in subroutine TMST. The number
of customers in a system or the status of a server would be

examples.

Statistical Computations and Reporting

Two subroutines perform statistical computations and
report their results. Subroutine PRNTQ computes information
about file usage during a simulation. Statistics are automatic-
ally kept in each file and are printed when subroutine PRNTQ is
called. For data collected in subroutines COLCT, TMST, and
HISTO, subroutine SUMRY computes the desired statistical infor-
mation and prints a summary report. PRNTQ and SUMRY do not alter
the values of the statistical storage areas nor the filing area.
They can be used by the programmer at any time during a simula-

tion to obtain statistical information.
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Monitoring and Error Reporting

Subroutines MONTR and ERROR assist the programmer in
debugging and tracing simulation programs. Both are convenient
subroutines for the programmer to alter in order to obtain ad-
ditional information during or at the conclusion of a simulation

Tun,

Random Deviates Generators

Subroutine DRAND generates an uniformly distributed random
variable in the interval 0 to 1. TFunction UNFORM(A,B) also
generates a deviate from a uniform distribution in the interval
A to B. The rest of the generators are three functions and a
subroutine, which generate deviates from a normal distribution,
a lognormal distribution, an Erland distribution and a Poisson
distribution correspondingly. These generators all use as argu-

ments the parameters stored in a row of the array PARAM.

Other Support Routines

GASP II includes the functions: AMIN(ARG1,ARG2), which
finds the minimum of two floating point variables; XMAX {(IARG1,
IARG2), which finds the maximum of two fixed point variables; and
AMAX (ARG1,ARG2), which finds the maximum of two floating point
variables.

Two additional support functions, SUMQ and PRODQ, that
obtain cumulative information concerning attributes in specific
files are included in GASP II.
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APPENDIX B
HEURISTIC SCHEDULING SIMULATION PROGRAM



The heuristic scheduling simulator is written in FORTRAN
IV within the framework of GASP simulation facilities which are
also written in FORTRAN IV language. It is intended for wide
utilization and easy adaptation on FORTRAN-equipped general-
purpose computers.

The simulator consists of a simple main program and a
set of subroutines. The logic flow of the main program is shown
in Figure B-1. Upon entering the main program, a set of data
is read in and followed by selection of one memory allocation
scheme via subroutine call. The memory allocation routine re-
turns to the main program, a Memory Assignment Table (MAT) which
is then passed on to the simulation management GASP subroutine
called GASP(NSET). The dynamics of the simulation, however, is
carried out by a subroutine called NDTASK (NSET) which depicts
the end-of-task event and conducts all necessary activities such
as status updating, next task selection, scheduling, execution
time calculation, memory conflict detection, etc.

The various routines and subroutines used, except GASP
routines which are described in Appendix A, are tabulated, and
their logic flow charts and FORTRAN listings are attached.



ENTER
MAIN PROGRAM

¥
INITIALIZATION
® READ IN DATA
® CLEAR WORKING BUFFER

MEMORY ALLOCATION

3 ALTERNATIVES

CALL GASP (NSET)

START DYNAMIC
SIMULATION

Figure B-1 Heuristic Scheduling Simulation Program
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SUBROUTINE NDTASK (NSET)
END OF TASK EVENT

DEACTIVATE TASK, DECREMENT
PREDECESSOR COUNTS OF ALL SUCCESSORS.
TAKE STATISTICS ON PROCESS STATUS.

RELEASE PROCESSOR, TURN BUSY

STATUS OFF.

ANY TASK READY
TCO BE EXECUTED?

YES

ANY PROCESSOR
AVAILABLE?

SELECT PROCESSOR
TURN BUSY STATUS
OoN

CHEDULE TASE TO PROCESSOR
ING RULBS_

# FIRST AVAILABLE FIRST SERVED

® LPP THEN LSG

© LPP THEN LSG, WAITING ON MEMORY
CONFLICT

BUSY?

SELECT TASK/PROCESSOR
PAIR WITH EARLIEST
COMPLETION TIME

ESTABLISH NEXT EVENT
UPDATE EVENT FILE

PROCESSOR

NO

TAKE STATISTICS ON
PROGRAM EXECUTION
TIME. REINITIALIZE

END OF
SIMULATION?

YES

( RETURN

DETERMINE TASK EXECUTION TIME BY RANDOM

HUMBER GENERATOR.
CALCULATE MEMORY CONFLICT TIME.
TAKE STATISTICS ON MEMORY CONFLICT
RECORD PROCESSOR ACTIVITY TABLE.

RESTORE TASK OWN

PREDECESSOR COUNTER

Figure B-2

End-of-Task Subroutine

B-4

PREPFARE METOP
PARAMETER FO% GASP
TAKE LAST STATISTICS
ON PROCESSOR STATUS




STIBROUTINE MCFLT (I ,NN)
DETECT & RECORD MEMORY
CONFLICT BETWEEN TASKS

:

LOCATE TASK I
IN MEMORY MODULE

CONSIDERED
ALL ACTIVE
TASKS?

FIND NEXT TASK
IN EXECUTION
LOCATE TASK 1IN
MEMORY MODULE

l

NO IS THERE MEMORY
CONFLICT?

COMPUTE CONFLICT TIME
STORE CONFLICT TIME IN
"coNFL"

TAKE STATISTICS ON"CONFL"

. :

SET CONFLICT
FLAG

Figure B-3 Memory Conflict Subroutine
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SUBROUTINE
PPSG

&

FIND LPP TASK FIRST
SET FLAG IF MULTIPLE
TASKS HAVE EQUAL LPP

e ™

YES

FIND LSG TASK
AMONG EQUAL
LPP TASKS

l

RETURN [*®

Figure B-4 Longest Precedence Path (LPP) - Largest
Successor Group [LSG) Scheduling Rule
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SUBROUTIIIE
WAIT

:

HAVE ALL READY

TASKS BEEN

CONSIDERED? RETURN
lmo

SELECT NEXT
READY TASK
WITH LPP

'

CHECK POTENTIAL

MEMORY CONFLICT

BETWEEN THIS TASK
AND ALL ACTIVE TASKS

YES

SET CONFLICT
FLAG

Figure B-5 Wait If Memory Conflict Scheduling Rule
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MASQ
INITIALIZATION

ARE ALL TASKS
ALLOCATED?

NO

ARE ALL MEMORY \ygg
PAGES FILLED?

NO

RETURN

SELECT NEXT TASK
SELECT NEXT EMPTY
PAGE

;

ALLOCATE TASK TO
EMPTY PAGE

Figure B-6 MASQ - Sequential Memory Allocation



MASS
INITIALIZATION

FIND IN PROCESS TASK

EXECUTION?

YES

ANY TASK \
READY FOR pulel
ANY PROCESSOR
AVATLABLE?
YES

FIND TASK WITH

4

WITH EARLIEST FEND TIME

COMPLETE TASK, RECORD END TIME
DECREMENT PRECEDENCE COUNT
OF ALL SUCCESSORS

RELEASE PROCESSOR

LONGEST PRECEDENCE
PATH (LPP)

ORE THAN ONE NO
TASK FOUND ?

YES

FIND TASK WITH
LARGEST SUCCESSOR
GROUP (LSG)

PROCESS CHAIN STATUS
RECORD TASK START TIME

ASSIGN TASK TO PROCESSOR, UPDATE

RESET TASK'S PRECEDENCE COUNTER

TO MEMORY
ALLOCATION

Figure B-7 MASS - Memory Allocation Via Static Scheduling




ENTER MEMORY
ALLOCATTON
]
MO AWVE ALL PROCESS CHAlns N\ 'ES
HEEN CONSIDERED?

|
! NG
ANY PROCESS
SELECT HEXT CHAIN REMAINDER
PROCESS CHAIN, =
SELECT NEXT
MEMORY MODULE, - Y
ALLOCATE TASKS IN
PROCESS CHAIN T0O o ABSHDER FIND PROCESS CHAIN
MEMORY MODULE MEMORY MODULE WITH LONGEST REMAINDER
A
YES / ANY EMPTY MEMORY
MODULE LEFT?
- 2le]
CALL OVRLAP /

TRY 3-WAY SWAP VS CONSIDERED ALL :gﬂ’m:‘;q
AMONG TASKS IN MEMORY MEMORY MODULES NOT RENBEks
AND UNZLLOCATED TASK WITH EMPTY PAGE ? -

NO
SELECT NEXT MEMORY
YES ALL HODULEP::-:II EMPTY
SUCCESSFUL? il
NO
4 ]
CALL OVRLAP
CALL OVRLAP SUBHOLTING
ALLOCATE REMAINING TASKS
TO MEMORY PAGES OF
SMALLEST OVERLAP INDEX 1 YES
= ANY OVERLAF BETWEEN REMAINING
\ TASK AND TASKS IN MEMORY?
NO
END 1 ]
ALLOCATE TASK
TO MEMORY
MODULE

Figure B-7 (Continued) MASS-Memory Allocation Via Static
Scheduling



SUBROUTINE
OVERLAP
CONSIDERED ALL s
TASKS IN THIS .
MEMORY MODULE?

NO

SELECT NEXT TASK
IN THIS MEMORY
MODULE

:

COMPARE THE RELATIVE TIMING

OF THIS TASK WITH THE UN-
ALLOCATED TASK RECORDED
IN THE PRECEDENCE CHAIN

ANY OVERLAP
IN EXECUTION
TIME?

RECORD OVERLAP
STATUS

COMPUTE AND
RECORD OVERLAP
INDEX

Figure B-7 (Continued) OVRLAP - Compute Memory Overlap
Subroutine



MAPP
INITIALIZATION

\

SELECT NEXT - —
PRECEDENCE PARTITION

\

SORT TASKS IN
PARTITION. ESSENTIAL
TASKS FIRST

i

SELECT NEXT
TASK (Q) IN PARTITION

l

SELECT NEXT -
MEMORY MODULE

;

SELECT NEXT ACTIVE TASK (P)
IN MEMORY MODULE

A

\

CAN P, Q
FORM A PATH?

YES

\

ALLOCATE Q IN MEMORY
UPDATE MEMORY PAGE POINTER

MORE
TASKS IN
PARTITION?

MORE
PARTITIONS?

GO TO
HORTZONTAL FOLDING

YES

Figure B-8 MAPP - Memory Allocation Via Precedence Partition
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START
HORIZONTAL FOLDING

;

MEMORY MODULES USED
LESE THAN OR EQUAL TO?
ACTUAL MODULE NUMBER?

&NO

SELECT NEXT TASK (P)
IN EXCESS MEMORY
MODULE

l

CALL COPLAT SUBROUTINE

COMPUTE PRECEDENCE
LEVEL DIFFERENCE
ALLOCATE TASK P TO
BASIC MEMORY MODULE
WITH EMPTY PAGE

l

Q
XL THIS

AEMORY MODULE?

MORE TASKS IN

EXCESS

NO

y

REDUCE

BY

EXCESS

MEMORY MODULE

1

Figure B-8

GO TO
VERTICAL FOLDING

)

(Continued) Horizontal Folding
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START
VERTICAL FOLDING

MEMORY PAGES UBED
LESS THAN OR EQUAL TO
NUMBER OF PAGES PER

MEMORY MODULE?

NO

SELECT NEXT TASK (P)
— | IN MEMORY MODULE
OF EXCESS PAGE

l

CALL COPLAT SUBROUTINE
COMPUTE PRECEDENCE
LEVEL DIFFERENCE
ALLOCATION TASK P TO
OTHER MEMORY MODULE
WITH EMPTY PAGE

l

MORE EXCESS PAGES
|YES IN THIS MEMORY
MODULE?

lno

REDUCE EXCESS
PAGE NUMBER OF
THIS MEMORY MODULE
BY 1

'

Figure B-8 (Continued) Vertical Folding
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( ENTER COPLAT ’

STORE TASK P IN MEMORY

ANY MORE ACTURE NO | MODULE WITH EMPTY PAGE
MEMORY MODULE ;
WITH EMPTY PAGE(S)? ANDUMRXIMIN TL
DIFFERENCE
YES
SELECT NEXT MEMORY B

MODULE WITH
EMPTY PAGE(S)

PROCESSED ALIL, TASKS
-V ES IN THIS MEMORY
MODULE?

NO

SELECT NEXT TASK (Q)
IN THIS MODULE

CAN TASKS
P

Lo
o

ATH?

NO

COMPUTE AND RECORD

PRECEDENCE LEVEL

DIFFERENCE BETWEEN
TASKS P AND Q

COMPARE THIS PL DIFFERENCE
WITH PREVIOUS PL DIFFERENCE
FPOUND ON TASKS IN THIS
MEMORY MODULE

STORE MINIMUM PL DIFFERENCE
ASSOCIATED WITH THIS MEMORY =
MODULE

Figure B-8 COPLAT - Compute Partition Level and Allocate
Subroutine (Continued)
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MESP

CxxxkxMUL TIPRACESSAR EXECUTIVE SIMULATION PRAGRAM - MESP

25
10

20

$1

*

*

NIMENSIGAN NSET(6,3)
COAMMON ID, IM,INIT, JEUNT, JANIT,MFA, MSTOP,MX,MXC,NCLCT,NHIST,NDQ,
* NORPT, N@T, NPRMS, NRUN ,NRUNS,NSTAT, BUT,SCALE, ISEED, TNAW,
* TBEG, TFIN,MXX ,NPRNT,NCRDR,NEP,VNR(4)
COMMAN ATRIB(A) ,ENQC4), INNCA) ,JCELS(5,22) ,KRANK(4) ,MAXNQC4),
MFEC4) ,MLCCA) ,MLEC4) ,NCELS(5),NQCA), PARAM(20,4),RTIME(C4),
* SSUMAC10,5),SUMAC10,5) ,NAME(&) ,NPROJ,MPAN,NDAY,NYR, JCLR
COMMOAN /A/ KTASK(32,6),I5T(32) ,NBSY(R),1TSK,
NTSK, NMM, NPG,NCPU,NPL,MARGIN
COMMBN /B/ MATC(16,16) ,CONFL
cOMMAN sC/ PAT(32,4) ,PEXT, TEXT,TIME, ITEM,TEMP, JX,17, JY
CALL SEARCH(1,68H(DMES),!,0)
TIME=0
TEXT=0
PEXT=0
NCRDR=31
NPRNT=1
READ(31,25) ((KTASX(I,Jd),J=1,68),1=z1,16)
READ(31,25) CISTC(IY>,I=1,32)
READ(31,25) ((MAT(I,J),J=1,4),1I=1,4)
READ(31,25) 1z ,J%,NMM,NPG, NTSK,NCPU
FORMAT(1214)
D@ 10 I=1,NCPU
NBSY(I)=0
D@ 20 I=1,NTSK
D@ 20 J=1,4
PAT(I,J)=0
CALL GASP(NSET)
CALL EXIT
END

SUBRAUTINE NDTASK(NSET)
DIMENSIAN NSET(6,2)
INSERT MEXCAM

INSERT COMA

INSERT COMB

INSERT COMC

IFC(I1Z.EQ.1) GA TR 102
IFCTNOW) 99,99,90

99 WRITE(1,100)
100 FORMAT(/2X,5SHEVENT,2%, AHTNAW,2%X, AHTASK 9%, SHPAT, 1 I X, IHT,

*

1X,BHPATCI,3),1X, 2HKK, 1 X, SHPAT(XK ,3),1%,5HCANFL/)

90 WRITEC1,101) TNBY
101 FORMAT(1X,6HNDTASK, 1x,F6,2)
CkkxxxTAKE STATISTICS AN PRACESSOR ACTIVITY,RELEASE ACTIVE PRPACESSOR
Ckxk%k AND DECREMENT PREDECESSAR COUNTS
102 IFCATRIBC4)) 1,2,3
1 CALL ERRORC!,NSET)

3

RETURN

I=ATRIB(4)+0,5

BSY=0.

IF(NBSY(I)  NE,0) RSY=1l.
CALL TMST(BSY,TNAW, I,NSET)
NBSY(I)=O

I=ATRIB(3)40,5



PATCI, 2):=1,
IFCILEQ.NTSK) G2 T[ g
J=KTASK(1,6)
IFCIST(IILERLDY (A TN 13
JI=KTASK(I+1,6)
LL= JJ=1
N2 5 X=.J,LL
KKz IST(X)
5 KTASK(K¥,5)=KTAS¥(KK,5)=1
CHxxx*TEST TASK READINESS AND TEST PRACESSA3 AVAILARILITY
{2 DA 10 I=1,NTSXK
10 TF(XTASK(I,5).,ER.,0) 6GA TN 20
DA 12 I=1,NCPU
12 IF(NRSY(I) NE,0) 673 TP 30
Ck«*k*RECYCLE, REINITIATF DIMMY FVENT AND TAVYE STATISTICS AN
Cx*x%x%PRAGRAM EXEC!UTIAN TIMF
13 PEXT=TN23W- TIME
CALL CPALCT(PSXT,1,NSET)
TIME=TN2W
ATRIB(1)= TN2W
ATRIR(2)=1
ATRIB(3) =1
ATRIBC4)=0
KTASK(1,5)=0
CALL FILEMC] NSET)
IFCI7,ER 1Y G2 TA 170
WRITEC]I,14)
14 FARMAT(/20X,24HPRACESSIR ACTIVITY TARLF)
WRITEC1,15)
15 FARMATC/10X,7HTASK NP, 4%,6HCP') NP, 6X, INHSTART TIME, 4X,2HEND TIME)
NP 17 I=1,NTSX
WRITECI,18) T,(PAT(1,Jd),J=1,3)
16 FARMATC(12Y,12,6X,3(FE.2,RX))
17 CANTINUE
170 DA IR I=1,NTSK
naA 17 J=1,4
12 PAT(1,J)=0
IFCNRUNS.,EQ.1) G2 TA o5
NRUNS= NRUNG-1
RETURN
20 ITS¥=1 _
DA 25 11=1,NCPU
25 IF(NRSY(I1),EQ,0) G2 T2 &0
Ckxkkx ESTABLISH NEXT NDTASK EVENT AND UPDATE EVENT FILFE
30 TEMP=5000,
D7 40 1=1,NTSK
IFCPAT(I, 1) ,EQR,0,) GA TA 40
IFCPAT(1,4),ER.1.) GT TH A0
IFCPAT(1,3).,GE. TEMPY GA TO an
TEMP=PAT(1,3)
I1=1
40 CONTINUE
ATRIZ(1)>=TEMP
ATRIR(2)=1
ATRIB(3):=11
ATRIBC4)=PATCI1,1)
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CALL FILEMCI,NSET)
RETURN
~xkkk*SCHENDULE TASKS BY HEYRISTIC RILES, DETERMIME TASK EXFECUTION
~«xx+xTIME, AND UPDATE PREACESSAR ACTIVITY TABLE
2 1TS¥= ATRIB(3)+0,5
11=1
S50 NFLG=0
G2 TP ¢70,672,63,64,65), JX
62 CALL RULE?2
G& T3 70
&3 CALL RULE3X
62 TA 70
64 CALL RULEA
G2 TA 10
65 CALL RULFES
NFLAG= |
IF (ITSX.FN,0) ~2 TA 30
70 CALL DRANDCISEED, RNUM)
I1=1TSX
TEXT=FLAATI(XTAGKC T,1) )% (] ,+3NUM)
BSY=0,
IFCNBSY(IT) ,NE, ™ RSY=2],
CALL TMST(BSY,TNAW,I1,NSET)
NBSY(II)=1TS¥
PAT(I,1)=11
PAT(1,2)=TNY
PAT(1,3)=TNAWHTEXT
raxkkkDETENT MEMARY CANFLINT, TAXKE STATISTICS AN CPNFLICT TIME
CakxkkASSUMING 507 TIME NEy Ay NJE TO MEMARY CANFLICT
IF(17.,EQ, 1) GA TR 72
WRITE(! ,71) I,(PATCI, D ,J=1,3)
Tl FORMAT(16X,12,1%,3(1v,F6,2))
72 IF(NFLG,EN, 1) GA T 75
NN= 1
CALL MCFLT(I,NN)
75 KTASK(1,5)=XTASK(1,4)
GO TA 8

Cas4%x*REVISE TASK END TIME DUE TO MEM@RY CANFLICT, RESTARE PREDECESS?R

rxkkxCAUNT
rekkkxk PREPARATIAN F2R THS END OF SIMULATICN
95 MSTAP=-1
NARPT=0
D@ 96 1=1,NCPU
BSY=0,.
IF(NBSY(I)Y,NE,0) RSY:1,
96 CALL TMST(RSY,TNAW, I,NSET)
RETURN
END
st
SUBRAUTINE RULE?2
INSERT CPMA
Cxxkkk*SCHEDULE LANGEST PRECEDENCE CHAIN (LPC) FIRST RULE
I1TEM=0
D@ 10 K=1 ,NTSX
IF(KTASK(K,5) NE, Q) G2 TA 10
IF(KTASK(X,2) ,LE,ITEM) GA TA 10

B-18



MESP

ITEM=KTASK(X,2)
ITSK=K
10 CANTINUE
RETURN
END
$1
SUBRAUTINE RULE3
INSERT CHMA
Cxxkk%SCHENULE LARGEST SECCESS?R GRAUP (LSG)Y FIRST RULE
ITEM=0
D? 10 K=1,NTSX
IF(KTASK(K,5).NE,N) GPA TA 10
IF(CKTASKC(K,3) . LE,ITEM) (@A TA [0
ITEM=XTASN(X,3)
ITSK=X
10 CANTINUE
RETJRN
END
%1
SUBROUTINE RULEA
INSERT CAMA
Ckxkkk SCHEDULE LPC FIRST IF MARE THAN ONE TASX THEN LSG RIILE
ITEM=0
DA 10 X=21,NTS¥
IFCKTASK(X,5),NE.0) GA TA 1"
IFCKTASK(K,2) LE,ITEM) RO TA 1N
ITEM= KTASX(X,2)
ITSK=¥
10 COANTINUE
ITEM=KTASKCITSK,3)
D@ 20 J=1,NTSK
IF(XTASK(J,5),NE,N) G TA 2n
ISC(KTASK(J,3) ., LE,ITEM 60 T3 29
ITEM=XTASY(J, D)
1TSK=J
20 CONTINUE
RETURN
END
$1
SUBRAUTINT RILES
NIMENSIAN ICANF(32)
INSERT COMA ‘
INSERT CIMR
Oekkxk SCHEDILE 1LPC TASK FIRST AND TMEN RUECY MEMPRY CPNFLICT
CrAkkx IF CANFLICT TRY NEXT LPZ TASY, TF NONE LET CPJ WAIT
Cxk*xxAND ESTABLISH NEXT NDTASK EVENT,
DA 1 I=1,NTSK
I ICONFCIY=0
NN=O
2 ITEM=0
1TSK=0
D3 10 K=1,NTSK
IF(KTASK(K,5)NE,N) 63 TA 10
IFCICANF(X).EQ.,1) GA TP 10
IF(KTASK(X,2).LE.ITEM) GZ% TA O
ITEM=KTASK(X,2)
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ITSK=X
10 CANTINUE
IFCITSK,ER.0) GA T@ 20
CALL MCFLT(ITSK,NN)
IFC(CANFL, ER.N,) GA TA 20
1CANFCITSK) =1
GA TA 2
20 RETURN
END
$1
SUBRBUTINE MCFLTCI, NN
DIMENSIAN NSET(6,2)
INSERT MEXCOM
INSERT CAMA
INSERT C@MB
INSERT CIMC
1FLG= NN
CANFL=0
C#xx&LACATE TASK 1 IN MEMARY MADULE MN
DA S M=l ,NMM
DB S L=1,NPG
IF(MAT(M,L). EQ. 1) MN=M
5 CANTINUE
cxxkkkFIND ACTIVE TASXS IN EXECUTION
N3 20 Nz1,NCPU
IF(NBSY(N) . ER.0) GA TA 20
IF(NBSY(N).ER.I) GA T 20
KXz NBSY( N)
IF(PATCKY,3) ,EQ, TNAW) 67 T2 20
CrakxxLACATE ACTIVE TASY IN MEMARY MONULE MM
Ne 20 M= 1, NMM
nA 20 L=1 ,NPG
10 TF(MAT(M,L) NE.KX) 63 T3 20
MM= M
CH++xxDETERMINE AND COMPUTE MEMARY CANFLIST TIME, STARE THE MEMORY
CHAkxkCANFLIST TIME IN COANFL
IFCMM.NE.MNY GA T2 20
IFCIFLG, ER,0) 6GA T3 30
CANFL=0
IFCPATCI,3)=PAT(KX,3)) 12,12,15
12 CANFL= CANFL+PAT(I,3)=TNAW
Go TA 17 .
15 CONFL=CANFL+PAT(KX,3)~TNAW
17 PAT(KX,3)=PATCKX,3)+0.5%CANFL
PATCT,3)=PAT(1,3)+0,5%CANFL
CALL CZLCT¢ CANFL,2,NSET)
CALYL HISTACCANFL,0,0,0.5,1)
IFCI7.ER.1) G7 T3 20
WRITEC1,19) I,PATCI,3),XX,PAT(X¥K,3),CONFL
19 FARMATCALX, 12,2%X,F6,2,2%, 12,2%,75.2,1X,F5,2)
20 CANTINUE
IF(CANFL) 22,22,25
22 CALL CALCTC CONFL,2,NSET)
CALL HIST@CCANFL,0,2,0.5,1)
25 RETURN
30 CANFL=1,



L 3]

51

$6

MESP

RETURN
END

SURRAUTINE EUNTSCIX,MSET)
DIMENSIAN NSET(6,2)
INSERT MEXTAM

INSERT CPma

INSERT CAM3B

INSERT CAMC

CALL NDTASK(NSET)

RETURN

END

SURRQUTINE ATPUT( NSET)
RETURN
END
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rokkkk SIMPLE SEQUENTIAL MEMARY ALLACATIAN - MASH
INSERT CMa
INSERT COMB
1=1
K=1
J= 1
10 IFCY . GT,NTSK) G? T@ 20
IF(I,GT,NMM) G# T9 20
MATCI, D=X
Xz K+1
J=Jd+l
IF(JLE.NPB) G TA 10
1= 141
J=1
GA TA 10
20 IF(IZ.NE.N) 67 TA 30
WRITECL,100) (1,1=1,4)
100 FPRMATC//168X,4(2%,1HM,11) /)
nAa 110 J=1,4
WRITE(1,110) J,(MATCY,J),1=1,4)
110 FORMAT(9X,AHPAGRE, 12,1X,412)
3N RETURN
END
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THkxkkMEMARY ALLACATIZAN ViA PRECEDENCE PARTITION - MAPP
ChxkkkINITITALIZATIAN
LAGICAL LINYW
INTEGER PLD,PLT,PRT,ST2¥%,P,0
INSERT CQAMA
INSERT /MR
cCMMaEN /E/ MPSCI6),PLNCIS),PLTC12),PRTC16),STOX(32) ,LINK
CALL SEARCH(I ,64(NDATA),!,0D)
CxxxxxREAD IN INPUT TABLES AYD LISTS
READC3L,10) C(XTASKC(I,J),J=1,R),1=1,1%)
READ(31,10) CISTC(I),I2],32)
READ(I1,10) (PLTC(Y),I=1,12)
READ(ILI 1 (PRT(CD ,I=1,16)
REAT(31,10) NMM,NPG, NTSK,NCPU, NPL, MARGIN
10 FARMAT(1214)
nA 20 I=1,16
MPSC1)=z0
PLD(1)=0
DA 20 J=1,16
20 MATC(I, D=0
Chxxxx STEP ] - PRELINMINARY ALLACATIAN
NMX=0
1=1
J=1
K=1
50 XK= PLT(X)
170 Q=KX
110 IF(MPSCIN)LEQ.0) BA T? 13n
JzmPS(1)-1
115 P=MAT(!,J)
CALL SRCH(P,")
ITFCLINK)Y GO TA 125
120 1z1+1
Jz= 1
G0 TI 100
125 IFCJ.GT. 1) G2 TA 15¢C
JTMPS( 1)
130 MAT(I, =0
J=
MPS(I)=J
IFCILLE.NMYXY G T2 140
NMX=1 :
140 KK=KX+}
IFCKK LT, PLT(X+1)) G T2 (RO
K= ¥+
IF(K AT, NPLY 67 T2 150
I1=1
63 T 5n
150 J=Jd=1
G TA 115
160 1=1
GA TA ton
Cx&x«%PRINT STEP | RESULTS
190 WRITECI,I191)
191 FPARMATC///17X,1 THSTEP | MEMARY MAP/ /)
WRITEC(1,192) (X,%=1,NMX)
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192 FIRMATCI7X,10C1HM, I12,2%))
D2 193 J=1,NPL
193 WRITEC1,194) (J,(MAT(I,J),1=1,NMX))
194 FARMAT(RYX,AHPAGE, 12,16(3%,12)/)
Cxxxx%xSTEP 2 - HARIZANTAL FALNING
I= NMYX
LIMIT=NPG
210 IF(I.,LE,NMM) G2 TA 290
J=MPS(I)=1
220 P=MAT(I,J)
CALL CAPLAT(P,LIMID
IF(J.EQ. 1) GA TR 230
Jz 41
GO TA 220
230 I=1-1
G TA 210
Ckxxkk PRINT STFP 2 RESULTS
290 WRITE(1,291)
291 F2RMAT(///17X,1THSTEP 2 MEMIRY MAP//)
WRITECI ,192) (X,¥z1 ,NMM)
D3 293 J=1,NPL -
293 WRITE(!,294) (J,(MAT(I,J),I=1,NMM))
294 FARMAT(]X,4HPAGE,I12,10(3%,12)/)
CxkkkkGTEP 3 -~ VERTICAL FILNING
300 IFLG:=O0
1=1
LIMIT=NPG
310 J=MPSC D)=
320 IF(J.,LE,NPG) G2 TA 33¥n0
P=MAT(T, )
CALL COPLAT(P,LIMIT)
J= S
GA T2 320
330 1=-1+1
IFCILE.NMMY 3@ TR 310
CxxkkkkPRINT STEP 3 RESULT
390 IF(IFLG.ER.,1) GMA TMA 3a5
WRITE(] ,391)
391 FORMATC(///17X,1 THSTEP 3 MEMARY MAP//)
WRITE(1,192) (X,%=1,MMM)
N2 393 J=1,NPG
393 WRITE(1,194) (J,(MAT(Y 1), 1=1,NMM))
1F(MARGIN,GE,NPB) G T2 4995
G570 T A00
335 WRITE(!,398)
e FORMATC//7/1TX I THSTEP 4 MEM(RY MAP//)
WRITEC(L1,132) (XK4K=1,MMM)
D@ 493 J=I,MPG
493 WRITE(1,1%4) (J,(MAT(I, D, I=1,MM%))
495 S7QP
Cxkkk%STEP 4 - SMAATHI 4G PRACESS
AN0 LIMIT=MARAGIN
IFLG:= !
GO T? 310
END
%1
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SUBRBUTINE SRCH(P,Q)
LAGICAL LINX
INTEGER PLD,®LT,PRT,STCK,P, 0
INSERT Cdma
INSERT CIMB
COMMON /E/ MPS(16),PLD(IS8),PLT(1I2),PRTC15),STCK(32) ,LINX
I11l=P
12=10
1=1
IF(P.EQ. @ G? T8 123
IF(PRT(P),EQR,PRT(A)YY GA TP 120
IF(PRT(P).GT.PRT(Q)) 63 T2 100
Nz P
P=Q
=N
100 IF(XTASK(R,68).,5Q,0) GA TA 115
K= KTASX(R,6)
105 IF(P.EQ,IST(X)) GO T2 125
L=IST(X)
IFCPRT(P) ,LE.PRT(L)) 6P TP 110
STCXCI)=1ST(X)
I=1+41
110 X=K+1
IF(XLT.KTASX(N+1,6)) GA TA 105
115 IF(1.EQ. 1) GO T? 120
1= 1-1)
A=STCKC I
60 T2 100
120 LINX= ,FALSE,
GQ T@ 130
125 LINK=, TRUE,
130 P=11
Q=12
135 RETURN
END

SUBRBUTINE CAPLAT(P,LIMIT)
LAGICAL LINK
INTEGER PLD, PLT,PRT, STCK,P,Q
INSERT CMMA
INSERT COAMB '
CAMMBN /E/ MPSC16) ,PLD(16) ,PLT(12) ,PRT(IK) STCX(32),LINK
N= ]
100 PLD(N)=32
M=MPS(N)
IF((MPS(N)=1),BE,LIMIT) GA TA 150
110 M=M=
A=MAT(N, M)
CALL SRCH(P, M
IFCLINX) GA TA 140
IF(PRT(Q), GE.PRT(P)) GA TA 130
ITEMP=PRT(P)=-PRT(Q)
120 IFCITEMP.LT,PLDC(N)Y) PLDC(N)=ITEMP
GA TA 1ao
130 ITEMPzPRT(Q)=PRT(P)
G2 1A 120
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140

150

152

155

160

165
170

MAPP

IF(M,NE, 1) GO TP 110

G T2 152

PLD(N)=O

Nz N+1

IF(N,LE, NMM) GQ T@ 100

N=1

I1=N

IF(MPS(I), GT,LIMIT) GA TA 1&5
ITEMP=PLD(N)

N=N+1

IF(N.GT,NMM) G? T2 170
IFCPLDCNY LE,ITEMP) GAA T8 (80
G TA 155

N= N+

G3 TA 155

J=MPS( D)

MATCI, =P

MPS(IY=J+I

RETURN

END
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CatskkMEMARY ALLOCATION VIA STATIC SCHEDULING - MASS
INTEGER TSKC, PCHN,PCHP
INSERT CGMA

INSERT CPMB
CAMMAN /D/ PCHN(8,32,3) ,LPCH(R) ,NPCH,TSHC,NAVT, NAMT ,MPGP(8),JJ,
* PCHP(R) ,1STCK(8),JSTCK(2) ,ISTAK(R), JSTAK(8) ,NAT(16,2)

Cxxk4xkx STATIC TASX SCHEDULING
Crxkak INITIALIZATIAN - CLEAR REGISTERS
CALL SEARCH(1,6H(DATA),1,0)
NPCHz= 0
TSXC=1
ITME=0
READ(31,10) ((KTASK(I,J),J=1,6),1=1,16)
READ(31,10) (IST(I1),1=1,32)
REANC31,10) NMM,NPG,NTSX, NCPU
10 FARMATC(I214)
nA 20 1=1,4
NBSY(1)=0
20 LPCH(IN=0
DA 30 1=1,4
DA 30 J=1,32
DA 30 %=1,3

30 PCHN(I1,J,¥)=D
Cxxkkk FIND READY TASX AND AVIALARBLE PRECESSAR

100 IF(TSKC,GT.NTSK) G7 T7 400

105 D 110 I=1,NTS¥

110 IF(XTASK(1,5),EQ.N) A TA 16N
CaxkkkFIND TASK WITH SMALLEST EXECUTION TIME

115 IST2R=1000

1Z2=0
120 17=17+1

IFCIZ.GT.NCPY) GA TA 146
IF(NBSY(IZ),ER,N) GA T3 120
JJzLPZHCIZ) -1
IFCISTARI.E,PCHNCIV,JJ,3)) G2 TA 120
1STAR=PCHN(17,JJ,3)
KX=NBSY(1Z)
11=12
G TA 120

Cxx+x ¥k RELEASE PRACESSAIR, RECHRD ENN TIME,NDECPEMENT PRECEDENCE CAUNT

130 WRITE(1,140) )

140 FORMAT(/8X,2HI1,4X,2HKK, AX ,4HTIME)
WRITEC1,145) T1T1,XK,KTASK(MW,1)
FARMATC RX,12,4%X,12,5%,12 )

CONTINUE

JJ=LPCH(IT)=]

150 L=KTASK(XKX,6)
LL=IST(L)
M= KTASK( KX+1 ,R)=1
MM= IST(M)
D3 155 I:=LbL,MM

155 XTASK(I,5)=XTASK(I,5)-1
ITME= PCHNCII, JJ,3)
NBSY(IT1)=0
G@ TG 105

160 DA 165 J=1,NCPY

d\n

14
14
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165 IF(NBSY(J).ER, D) G3 TA 203
GA T3 115
CxkdxkFIND TASK WITH LANGEST PRECEDENCE CHAIN
200 WRITEC(1,201)
201 FORMATC(/9X,I1HI S, IHD
WRITE(1,202) 1,J
202 FARMAT( 8X,12,4%,12 )
203 CANTINUE
IFLG=0
205 N=1
LPC=KTASK((,2)
210 IF(I1,EQ,NTSK) G T2 226
I=1+1
IF(XTASX(1,5).NE,0) GA T3 219
IF(LPR,LT.KTASX(1,2)) GO TA 205
IF(LPS,EN,KTASY( 1,2)) IFLG=!
GA T2 219
Cxxxk«FTND TASK WITH LARGEST SUCCESSAR GRAIP AMONG EQUAL LPC TASKS
220 YRITE(!,224)
224 FOARMAT(/2Y,3HLPC, 4%, HN)
WRITE(] ,225) LPr,N
205 FARMAT( 2X,12,4%,12 )
226 CANTINUE
IFCTIFLR,ER,0) GO TA 300
LSAz=YTASK(N,3)
I=1
230 TF(VTASK(I,5).,NE,0) GA T7 240
IF(LPC,NE,XTASX(T,2)) GM TP 240
IF(I.ER,") GA& TA 240
IF(LSK.GE, XKTAS¥(1,3)) GA T 240
LSG=XTASK(1,3)
Nz T
240 1= 141
IFCI.LE,NTSX) G7 T2 230
nkkkkk ASSTGN TASK T@ PRPACESSPR,RES7ZRN TASY START TIME,RESET WTAS¥(I,5)
300 NBSY(J)=N
IF(NPTH,LT. J) NPCH=J
1=J
JzLPCH(D)
TF(J s EN0) J=1
PCHNC I, J,1)=W
POCHM(T ,J,2)= ITME .
POCHN(Y,,J,3)= ITME+YTASK(N,1)
NAT(N,1)= ITME
NAT(N,2)= I TME+XTASK(N, 1)
VTASK(N,5)=KTAS¥(N,4)
Jz J+1
LPCH(I)=J
TSY. Cz TSXC+1
GP TA 100
400 WRITE(1,403)
403 FPRMAT(/9%,27THPRANESS CHAIN = POHN(I,J,¥))
WRITEC(],401) (JdyJd=1,?)
ANl FARMAT(/16%X,214/)
ng an5 1:z1,MPCH
WRITEC! ,402)
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402 FARMAT(/)
D@ 405 K=1,3
405 WRITE(!1,408) 1,Ka CPCHNC(I ,J K)o, J=1,R)
406 FARMAT(BX,2HI=,11,2%,2HK=, 11 ,814)
410 CONTINUE
Cxxkx*BEGIN MEMPRY ALLOCATION - CLEAR DATA TABLES
DA SCO0 I=)  NmMM
MPGP(I»=0
DA 500 J=1,NPG
500 MAT(I,J)=0
D? 510 I=1,NCPU
510 PCHP(I)=O
Fxxkxk*kPRACESS CHAIN T72 MEMARY ALLACATIEN TABLE TRANSFER
I1=1
11=1
500 IF(LPCH(I),FQ.0,7R, I, AT, NCPU) GA TA 565
IF(LPCHC ) ,GT,NPG) G TA 540
LL=LPCH( 1) -1
DA 530 J=1,LL
530 MAT(IT1,J)=PCHN(I,J, 1D
MPGP(II)=LPCHC(D)
LPCH(I)=O
GA TA 560
540 D9 550 J=1,NPG
550 MATCII,J)=PCHNC(TI,J, 1)
MPGP(II)= NP1
PCHPC{IY=NPG+1
560 I11=T1+1
1=1+1
GA T@ 520
565 WRITE(1,567)
567 FARMATC//9%X,32HSTEP | - PRACESS CHAIN TA MEMPRY/)
cALL TYPE
Cxkkk*xFIND PRACESS CHAIN WITH LONGEST REMAINDER
570 IF(HNMM_ EQ,NPCH) 6P TQ 645
M=z0
I=1
600 IF(I.GT.NPCHY GA T 620
IFCLPCHC(I) ,ER.0) GP TR 610
IFC(LPCHC(I)=PCHPC(TI)LE. M) G2 19 610
M=LPCH(I)= PCHP(I)
M= 1
€10 I=1+1
GO T@ 600
620 1F(M.ER.0) G@ TA 775
Crkkkkx FIND EMPTY MEMORY MADULE
11=0
630 II=11+1
IF(IIGT.NMM) GT TR 645
IF(MPGPCII) NE.O) GO TA 630
CH%¥%kkASSIGN REMAINDER TASKS IN PRACESS CHAIN TQ® EMPTY MEMPRY MOADULE
IF(M, GT,NPG) M=NPG
JJ=MPRP(TIIN+1
J= PCHP(N)

I=N
640 MAT(IT,JI=PCHNC(E,J, 1)



MASS

JdzsJJ+1
MPGP(II)=JJ
J= Ml
PCHP(N)=J
IF(JJ.LE.,M) GA TN 640
IF(PCHP(N), GE,LPCH(N)) LPCH(N)=0O
G TO 570
GA5 WRITE(!,647)
647 FARMAT(//9%X,A0HSTEP 2 - REMAINDER CHAIN T® EMPTY MADULE/)
CALL TYPE
Ckx**k FI ND EMPTY PAGE IN MEMPRY MANULE - SCAN REMAINDER TASKS
650 DO 660 K=1,16
ISTCK(X)=0
JSTCK(KY=0
ISTAK(X)=0
660 JSTAK(K)=0
K= 1
Kx=0
KK=1
670 1=0
675 I=1+1
IF(1,GT,NPCH) G TA K97
676 IF(LPCH(I).EQ.N) GA TB 675
677 LPCH(ID=LPCH(I)-1
J=LPCH(I)
11=0
680 II1=T11+1
IFCI1.GT.NMMY GO T 695
IF(MPGP(II),GT.NPGY G T3 680
CxkxkxALLACATE TASK IF NA GURLAP WITH RESIDING TASK IN MEMPRY MODULE
CALL QVRLAP(I,J,II,X¥XX)
WRITEC1 ,685) PCHN(I,J, 1), 1T ,NAVT

685 FOARMATC/TX,3(2v,12))
IFCNOVUT,NE, Q) GP TP &80
JJzMPGP(1I)

MAT(IT, JJ)=PCHNCI, J,1)
MPGP(I1)= JJ+!
IFCLPCH(I) ,LE.PCHP(I)) LPCH(I)=0
GA T2 676
CHhex¥xSTARE UNALLJCATABLE TASX INNEXES IN STACY

695 ISTCK(X)=1
JSTCX(X)=J
Kz K+1
TFCLPCHCI)LE.PCHP(I)) LPCHM(IN=O
G2 T?H €78

697 WRITES(1,698%)

699 FARMAT(//9%X,37HSTEP % - REMAINDER TASK T EMPTY PAGE/)
CALL TYPE

Cxkxxx3=-TASK SWAPPING (APERATI AN

700 IF(X.EQ.1) G0 T2 775
K= ¥=- 1|
I=ISTCY (X)

J=JSTEK(X)
I11=z0
710 I1=11+1
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IFC(I1, GT.NMM) GO TA 735
IF(MPGP(IT) . GT.NPR) GA TA 710
MM=0
720 MM=MM+1
IF(MM,GT. NMM) G? TA 740
IF(MM,.EQ.II) GA T 720
CALL QVRLAPCI, J, MM, KX)
IF(NQVT . NE,0) GP TA 720
NN=O
730 NNz NR+1
IF(NN, GE.MPGP(MM)) G@ T# 720
CALL OVRLAP(MM NN, IT,XX)
IF(NAVT, NE,O) G2 TR 730
Cax*xx*INI TIATE ACTUAL SWAPPING ACTIVITY
JJ=MPGP(I])
MATCII, JJ)=MATC(MM NN)
MAT(MM,NN)=PCHNC(I, J, 1)
MPGP(II)=JJ+1
G2 T3 700
Cxakokx STARE UNSWAPPABLE TASKS IN STACK
740 ISTAX(KKD=1
JSTAK(XK)=J
KX= KX+ !
GO8 TA 700
735 WRITEC1,745)
745 FPRMAT(//9X,30HSTEP 4 - MEMOARY MAP AFTER SWAP/)
CALL TYPE
Ckkkkk ALLIICATE REMAINDER TASXS T2 MIDULES 2F SMALLEST AVRLAP INDEX
750 IF(KK,FQ,1) GZ T@ 775
KKz KK=1
IZ=ISTAX(XX)
J=2 JSTAK(KK)
ITEMP=}000
1I1=0
760 1I1=11+1
IFCII.GT,NMM) G2 T@ 770
KXz
CALL AVRLAP(I,J,1I,¥XX)
IF(NAMT,GE., ITEMPY G TF 760
ITEMP=NAMT
1ST2= 11
G0 T3 760
770 11=1S19
JJ=MPGP(ID)
MATCIT, JJ)2PCHN(T,J,1)
MPGPCII)=MPGP(II)+}
G3 T? 7150
775 WRITE(1,720)
720 FARMAT(//9%X,25HSTEP 5 - FINAL MEM@RY MAP/)
CALL TYPE
800 ST2P
END
31
SUBRAUTING AVRLAP(1X, JX,L¥, XX)

INTEGFR TSKC, POHN
INSERT oMA » PCHP

B-31



$1

$0

100

130

140
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110
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INSERT COMB

INSERT COMD

NAMT=0

NAVYT=0

MX=0

MYX=MX+1

IF(MX . EQ.MPGP(LX)) GA T 140
IT=PCHNCIX, JX, 1)
LT=MAT(LX,MX)

IFCNAT(LT,2) JLE.NATCIT, 1), BR.NATC(IT,2) ,LE,NAT(LT, 1)) 6GA TR 100

NOUT=NAVT+1

IF(KX,EQ. 1) GA TR 130

NAMT=MAT(LX,MX)
JJd= Mx

GA T2 100
IFCPCHNCIX, JX33)e CEcPCHNCT,J,3)) NX=PCHN(T,J,3)
IFCPCHNC IX, JX,3) LT PCHN(T,J,3)) NX=PCHNCIX,JX,3)
IFCPCHNCIX, JX2) o GE,PCHN( T, J,2)) NY=PCHNCIX,J¥X,2)
IF(PCHNC IX,JX,2) LT, PCHN(I ,J,2)) NY=PCHN(I,J,2)
NAMT= NAMT4+ ¢ NX-NY)

GA TA 100
RETURN
END

SUBRQUTINE TYPE

INSERT COMA

INSERT COMB

INSERT COMD

WRITEC1,100) (1,I=1,4)
FARMATC/16%,4¢2X, 1 HM, 11) /)
DA 110 J=1,4

WRITECI,110) J,(MATCI,J),121,4)
FPRMAT(9%,AHPAGE, 12,1%,414)
RETURN

END

B
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